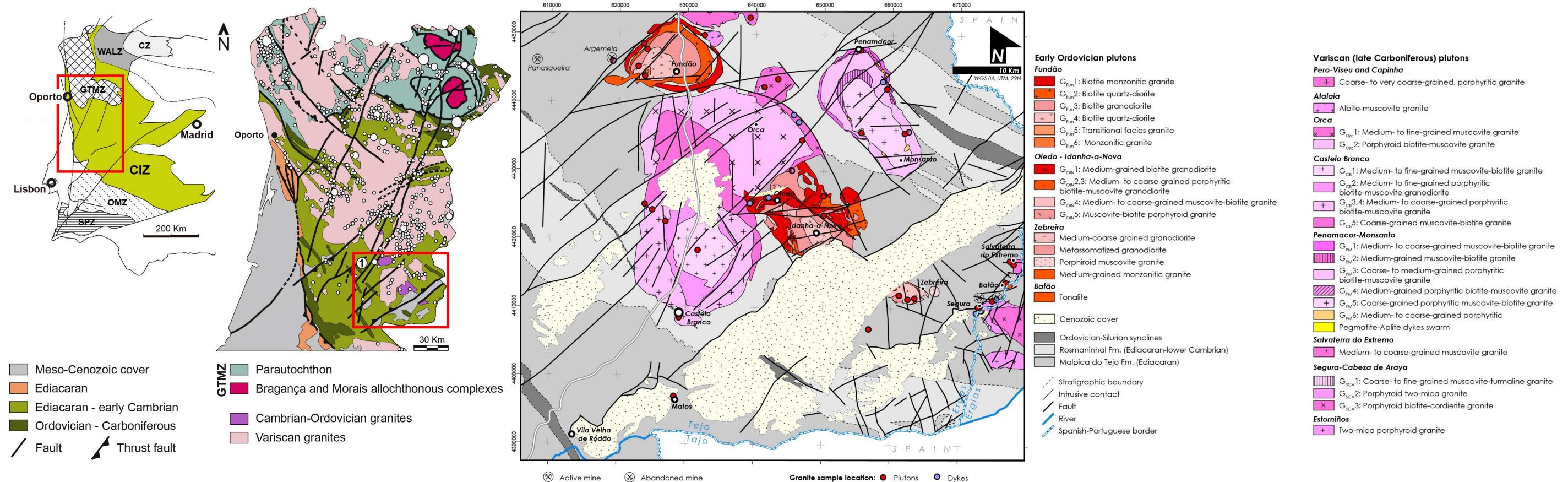
# The lanthanide tetrad effect as an exploration tool for granite-related rare metal ore systems: examples from Iberian Variscides

Ivo Martins, António Mateus, Isabel Ribeiro da Costa, Miguel Gaspar, Ícaro Dias da Silva




#### MINERALS FOR OUR FUTURE August 27-30, 2022 | Denver

# **1.** Motivation and setting

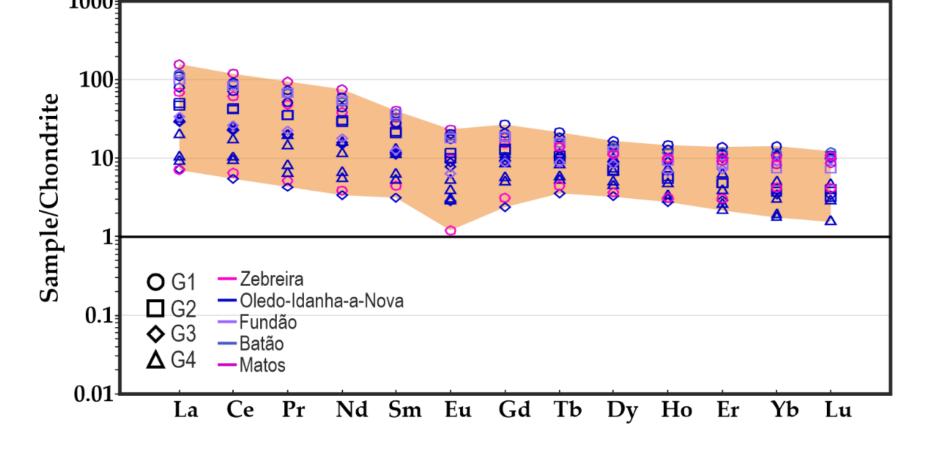
In this work we assess the application of the degree of the lanthanide tetrad effect (**TE<sub>1.3</sub>**; Bau, 1996; Irber, 1999; Monecke et al., 2002) as an exploration vector for granite-related mineralization in the Central-Iberian Zone (**CIZ**).

This study focuses on the Segura-Panasqueira area (CIZ, Portugal), characterized by a siliciclastic (shale-greywacke) which İS metasedimentary sequence, belonging to the Beiras Group, that hosts several voluminous granite bodies. Numerous mineral occurrences were recognized in this area, indicating significant metallogenic potential.



### <u>Granitic rocks representing two main regional magmatic events:</u>

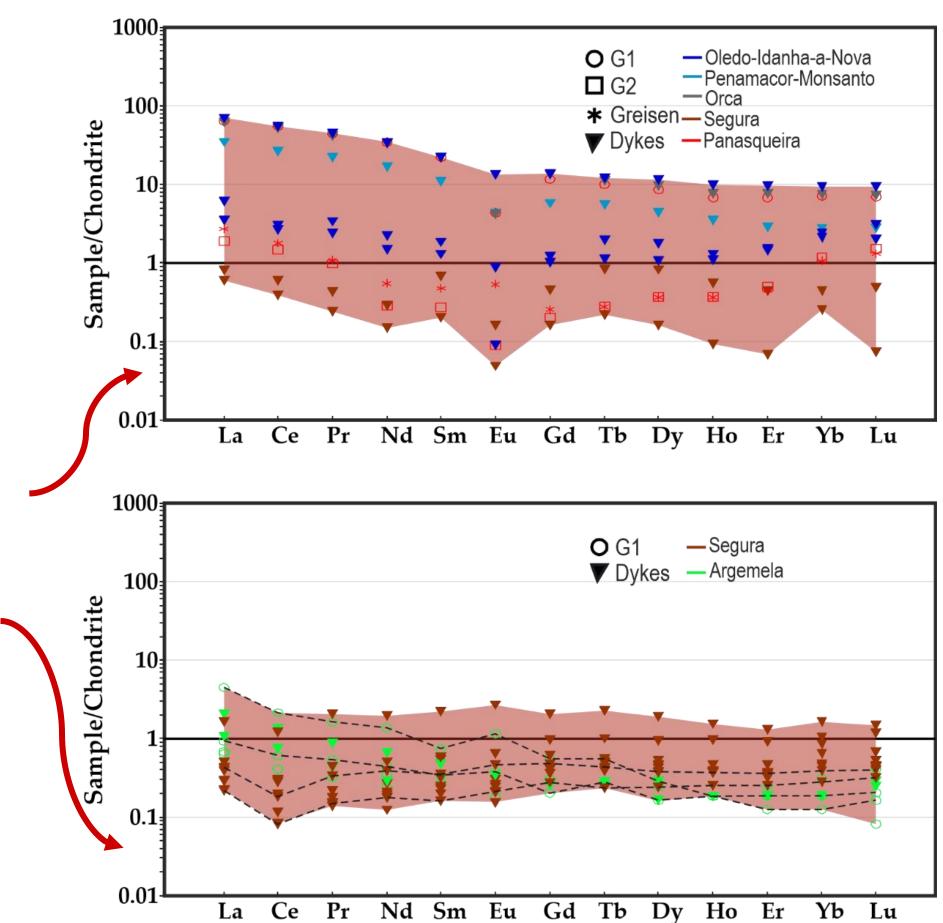
- Cambrian-Ordovician (490-470 Ma)
- > Zebreira, Oledo-Idanha-a-Nova, Fundão, Batão and Matos plutons and dykes;
- Carboniferous-Permian (Variscan 320-290 Ma)
- Castelo-Branco, Salvaterra do Extremo, Capinha, Segura, Atalaia, Orca, Penamacor-Monsanto plutons and dykes, and Zebreira porphyry;
- > Highly differentiated granite rocks that are key references for granite-related ore systems, such as the Panasqueira Granite, Li-Sn Argemela Rare Metal Granite, and the Li-Sn-bearing aplite-pegmatites dykes of Segura.


## **2. Whole-rock geochemistry**

#### -<u>Cambrian-Ordovician magmatism</u>:

- Weakly peraluminous I-type;
- Bt/Bt>Ms tonalite to granodiorite;
- Calcic to calc-alkalic series and magnesian granitoid rocks; • Diorite to normal granite compositions;
- Volcanic arc granitoids;

#### -Variscan magmatism:


- Highly peraluminous S-type;
- Ms>Bt/Bt>Ms monzogranite to granite;
- Calc-alkalic to alkali-calcic and magnesian to ferroan granites; • Strongly differentiated rocks;





### - <u>Highly differentiated</u> rocks:

- Follow the typical S-type granites fractionation trend;
- Plot in the leucogranites field, near the Rare Metal Granite composition;
- Panasqueira greisen, Argemela Rare Metal Granite and aplite-pegmatite dykes from Argemela and Segura deviate from the general trend;
- > M-type group (convex) Wide range of REE contents, negative sloped patterns, slightly flat HREE and pronounced Eu/Eu\* anomalies  $-> TE_{1.3} = 1.01 - 1.38;$

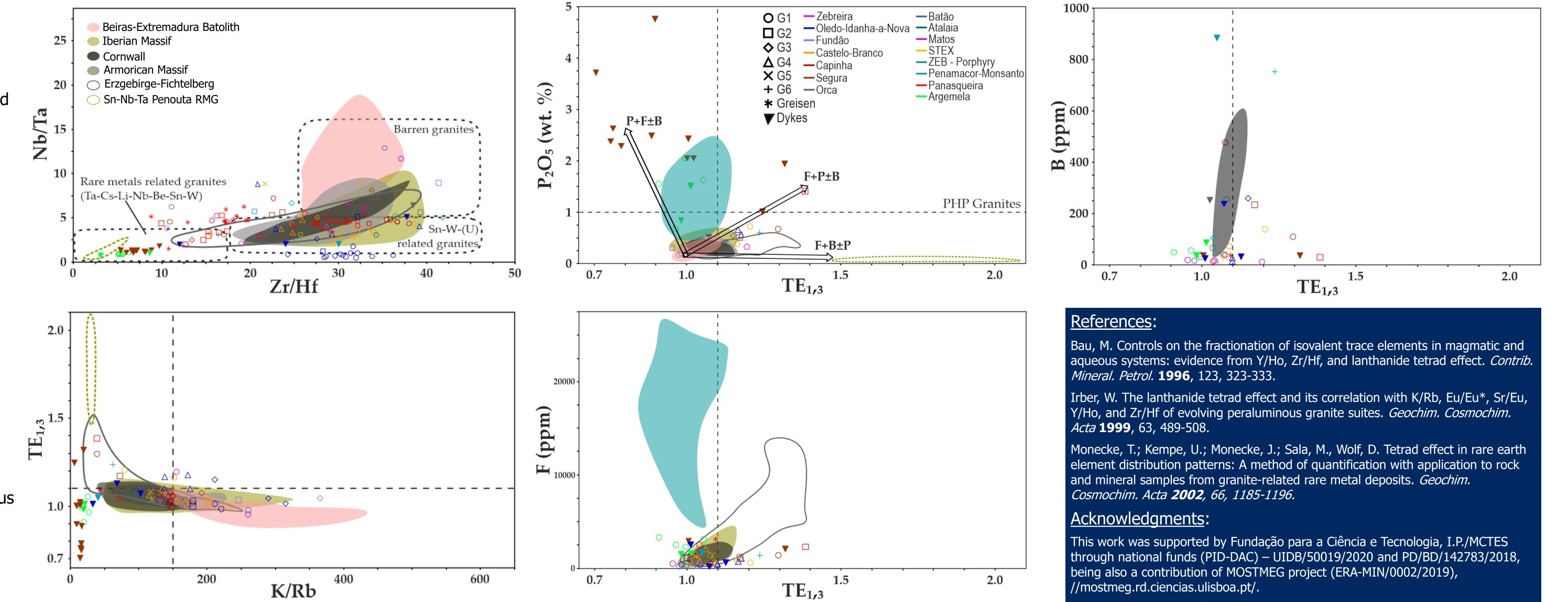


- Syn-collisional granites;

#### -<u>Cambrian-Ordovician and Variscan magmatic events</u>:

- Wide REE concentration ranges, but similar patterns;
- Negative sloped patterns, LREE enrichments relatively to HREE and negative Eu/Eu\*;
- Comparable TE<sub>1.3</sub> (0.95-1.20 for Cambrian-Ordovician; 0.99-1.30 for Variscan granites).

| 100   | 2           |              |              |         |          |    |    |    |    |    |    |
|-------|-------------|--------------|--------------|---------|----------|----|----|----|----|----|----|
|       |             |              |              | Ø       |          |    | -  |    |    |    |    |
| 10    | 0           |              |              | ļ       |          |    |    | 8  |    |    |    |
|       |             |              | 0            | đ       |          |    |    | ō  | Ö  | 0  | 0  |
| 10    | <b>O</b> G1 |              |              |         |          |    |    |    |    |    |    |
|       | 🗖 G2        |              |              | 0       |          |    |    |    |    |    |    |
|       | <b>�</b> G3 | — Castelo-Br | anco — Atala | aia     |          |    |    |    |    |    |    |
|       | <b>Δ</b> G4 | -STEX        | — Orca       |         |          |    |    |    |    |    |    |
|       | <b>X</b> G5 | — Capinha    | — ZEB        | - Porph | yry      |    |    |    |    |    |    |
| 0.01  | <b>+</b> G6 | — Segura     |              |         | Monsante | D  |    |    |    |    |    |
| 0.01- | La          | Ce Pr        | Nd Sm        | Eu      | Gd       | Tb | Dy | Ho | Er | Yb | Lu |


> W-type group (concave) – Low contents of REE, positively to negatively sloped patterns and tendentially positive Eu/Eu\*  $-> TE_{1.3} = 0.71 - 1.05.$ 

# 3. Granite differentiation, metal specialization and the $TE_{1,3}$ as an exploration vector

-Good compositional similarity with published data for similar rocks from other sectors of the Variscan belt;

#### - Clear correlation between different element ratios:

- Weakly peraluminous Cambrian-Ordovician rocks are less evolved;
- Highly peraluminous Variscan granites and dykes are strongly differentiated and significantly affected by magmatic-hydrothermal processes;
- Variscan magmatism tend to be more fertile;
- -Granite differentiation led to a progressive enrichment in granitophile elements (e.g., Sn, Li, Nb, Ta, Be, Cs);
- -Increase in  $TE_{1,3}$  values tend to co-vary with magmatic differentiation and metal enrichment:
- Poorly differentiated Cambrian-Ordovician granites with the lowest TE<sub>1.3</sub> values (up to 1.2);



• Variscan granites showing gradually higher  $TE_{1,3}$  values (up to 2.1 – Penouta RMG);

• Li-phosphate-bearing rocks deviate from this general trend, having no evidence of tetrad effect ( $TE_{1,3} < 1.1$ );

-**TE<sub>1.3</sub>** values can be used to separate:

• **P+F±B (P>F)** systems related to Li-Sn Peraluminous-High-Phosphorous granites and Li-phosphates-bearing pegmatite dykes (TE<sub>1.3</sub> <1.1);

• F+P±B (F>P) systems related to W-Sn-Li Peraluminous-High-Phosphorous granites and lepidolite-bearing aplite-pegmatite dykes ( $TE_{1,3}$  up to 1.4); • F+B±P (F>B) systems related to Sn-Ta-Nb Peraluminous-Low-Phosphorous granites ( $TE_{1,3}$  up to 2.1);