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Abstract: Highly fractionated granites and related magmatic-hydrothermal ore-forming processes
can be traced by elemental ratios such as Nb/Ta, K/Rb, Y/Ho, Sr/Eu, Eu/Eu*, Zr/Hf, and Rb/Sr.
The lanthanide “tetrad effect” parameter (TE1,3) can also be a useful geochemical fingerprint of highly
fractionated granites. This work assesses its application as an exploration vector for granite-related
mineralization in the Central Iberian Zone by examining TE1,3 variations with different elemental
ratios and with the concentrations of rare metals and fluxing elements (such as F, P, and B). The multi-
elemental whole-rock characterization of the main Cambrian–Ordovician and Carboniferous–Permian
granite plutons and late aplite–pegmatite dykes exposed across the Segura–Panasqueira Sn-W-Li belt
show that the increase in TE1,3 values co-vary with magmatic differentiation and metal-enrichment,
being the Carboniferous–Permian granite rocks the most differentiated, and metal specialized. The
Argemela Li-Sn-bearing rare metal granite and the Segura Li-phosphate-bearing aplite–pegmatite
dykes deviate from this geochemical trend, displaying TE1,3 < 1.1, but high P2O5 contents. The results
suggest that mineralized rocks related to peraluminous-high-phosphorus Li-Sn granite systems
are typified by TE1,3 < 1.1, whereas those associated with peraluminous-high-phosphorus Sn-W-
Li (lepidolite) and peraluminous-low-phosphorus Sn-Ta-Nb granite systems display TE1,3 > 1.1,
reaching values as high as 1.4 and 2.1, respectively.

Keywords: CIZ magmatism; granite differentiation; granite-related ore systems; lanthanide tetrad
effect; mineral exploration

1. Introduction

Current technological development and energy transition policies amplify our de-
pendence on a large number of metals with low recycling rates. Such context generates
additional pressure on mineral exploration endeavors to search for new primary resources
of these strategic metals, which are often associated with highly evolved muscovite-bearing
peraluminous granites [1–4].

Granite-related ore systems include mainly: (i) quartz lodes, breccia pipes and skarns en-
riched in W-Sn-F(-P)-bearing mineral assemblages, and (ii) rare-metal granites and pegmatite-
hosted mineral assemblages enriched in Li-Cs-Be-Ta(-P) and Nb-Y-F(-Sn) (e.g., [1,5,6]). Nu-
merous granite-related ore systems with different mineralization styles coexist in Europe,
forming a world-class Sn-W-Li province of Paleozoic age [7–15]. The Segura–Panasqueira
area, in the Central Iberian Zone (CIZ—the central geotectonic unit of the Iberian Variscan
belt), is part of the well-defined Late Palaeozoic granite-related European metallogenic belt,
where voluminous peraluminous granite suites with distinct degrees of differentiation are
associated with varied W, Sn, and Li ore systems.
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Highly fractionated granites and associated magmatic-hydrothermal ore-forming pro-
cesses can be traced by elemental content ratios such as K/Rb, Sr/Eu, Y/Ho, Rb/Sr, Nb/Ta,
and Zr/Hf [4,16–20]. The lanthanide tetrad effect has also been used as a geochemical
marker of magmatic evolution and magmatic-hydrothermal transition, corresponding to a
specific form of rare earth element (REE) fractionation, evidenced by the subdivision of the
chondrite-normalized REE patterns into four curved segments that are called tetrads [18,21].
There are two types of REE patterns portraying the tetrad effect, with the curved segments
being either convex (M-type) or concave (W-type) [16–18]. This REE fractionation is com-
monly observed in highly evolved felsic magmatic rocks and related metasomatic rocks,
as well as in mineral precipitates from hydrothermal fluids, accessory minerals and melt
inclusions [16,18,22–27]. The M-type pattern may represent highly evolved granites from
which a coexisting fluid, with a W-type REE pattern, is extracted [18,21,28,29]. Yet, other
studies [30,31] indicate that conventional magmatic crystallization alone can yield similar
M-type patterns and melt-fluid immiscibility is not needed to explain tetrad-like REE
patterns. Nevertheless, deviation of the tetrad curved segments from a theoretical “tetrad
effect”-free chondrite-normalized REE pattern can be quantified, such as the degree of
tetrad effect (TE1,3—deviation of the first and third tetrad) which is considered significant
when TE1,3 > 1.1 [18].

In this work, the application of the TE1,3 as an exploration vector for granite-related
mineralization is assessed by examining the TE1,3 variations along with other geochemical
parameters and the contents of rare metals (Sn, W, Nb, Ta, and Li) and fluxing elements.
New whole-rock multi-elemental geochemical data of the main (composite) plutons and
dykes exposed across the Segura–Panasqueira area are reported, supporting a compre-
hensive geochemical characterization of: (i) granite and granodiorite rocks that represent
different regional magmatic pulses; and (ii) late Rare Metal Granite (RMG), aplite–pegmatite
dykes, and greisen rocks from Argemela, Segura, and Panasqueira representing the W,
Sn, and Li granite-related ore systems. The degree of differentiation and mineralization
potential, as well as the applicability of the TE1,3 as an exploration tool for granite-related
ore systems are discussed, along with the geochemical composition of granite rocks from
other sectors of the Variscan belt.

2. Geological Setting

The Segura–Panasqueira area is located in the CIZ, which forms the central part of
the Iberian segment of the Variscan orogenic belt (Figure 1a). The Gondwana-Laurrussia
collision and subsequent closure of the Rheic Ocean (Middle-Devonian to Middle-Upper
Mississippian), followed by late (post-thickening) lithospheric rebound and stress relieving
(Middle-Upper Mississippian to Permian), have primarily controlled the tectonic evolution
of the Variscan belt [32–36].

Three main deformation phases (D1, D2 and D3) have been distinguished in this
domain of the Variscan orogenic belt [32,33,37–41]. The D1 and D2 deformation phases
(359–336 and 337–316 Ma, respectively) [35,42–44] reflect the maximum Variscan crustal
shortening during which folds of large amplitude were generated: these folds display
variable geometry and orientation depending on the orogenic sector, presenting an NW-SE
preferred strike with sub-vertical axial planes [33,45].
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Figure 1. (a) Geotectonic map of the Iberian Massif (adapted from [46,47]). CZ—Cantabrian Zone;
WALZ—West Asturian-Leonese Zone; GTMZ—alicia Trás-os-Montes Zone; CIZ—Central Iberian
Zone; OMZ—Ossa Morena Zone; SPZ—South Portuguese Zone. (b) Simplified geological map
of central and northern Portugal (adapted from “Carta Geológica de Portugal 1:1,000,000”, Geo-
logical Survey of Portugal, LNEG, 2010; modified from [48]). White circles represent the main
known tungsten and tin deposits (mineral deposits location taken from the official national catalog
SIORMINP–LNEG). 1—Panasqueira Mine.

Concurrently with D1 folding and often reflecting thermo-mechanic contrasts gener-
ated during heterogeneous strain accommodation, several regional ductile syn-D1 shear
zones were also developed. After tectonic emplacement of the allochthonous piles typify-
ing NW Iberia and the HT-LP event affecting the underlying CIZ (D2-M2, after [41,47]),
intra-continental strike-slip sinistral and dextral sub-vertical semi-brittle shear zones were
formed during D3 [49–54], together with folds displaying sub-vertical axial plane and
sub-horizontal axis [45,50–55]. These sub-vertical shear zones, locally reactivating previous
syn-D1 shears, are often confined to the edges of voluminous granite batholiths [38,56–62].
Spatial distribution of shear zones and folds indicates NE-SW maximum compression
trajectories [63], not deviating significantly from the stress configuration characterizing
the previous deformation phases. The D3 (315–306 Ma) [39,44,56] deformation phase took
place mostly after the climax of crustal thickening, followed by decompression and HT-LP
metamorphism during which large volumes of crustal melting were produced [39,55,64–68].
Late- to post-D3 (300–270 Ma) [63,69], conjugate strike-slip fault systems running NNE-
SSW (left-lateral) and NNW-SSE (right-lateral) were further generated in brittle conditions,
locally reactivating syn-D3 (and syn-D1) shear zones (e.g., [37–39,45]).
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The Beira–Baixa region, which includes the Segura–Panasqueira area, comprises volu-
minous granite bodies hosted in a folded siliciclastic metasedimentary sequence that was
recrystallized under greenschist P-T conditions of greenschist metamorphic facies. The
metasedimentary sequence corresponds to the Dúrico–Beirão Supergroup (e.g., [70–74]),
which includes the Douro Group (Cambrian Stage 1 to Stage 4) and the Beiras Group (Edi-
acaran to Cambrian Stage 3, “Marianian-Bilbilian”) [75–77]. Granitoid rocks cropping out in
the CIZ show a wide range of facies and compositions [40], resulting from partial melting of
various protoliths, at the mid-lower crust transition, such as metapelites, meta-greywackes,
and metavolcanic rocks. In some cases, contributions from lower crustal granulites were
also proposed (e.g., [56,78–80]). Following criteria based on the age relationship between
the emplacement of these rocks and the D3 phase, these granites are usually classified into
four main subgroups (e.g., [56,81–84]):

(i) Syn-D3 (ca. 320 to 310 Ma)—two-mica granites, strongly peraluminous, with aluminum-
potassic affinity, representing magmas derived from partial melting of metapelites;

(ii) Late-D3 (ca. 310 to 305 Ma)—moderately peraluminous and aluminum-potassium
biotitic monzogranites/granodiorites with aluminum-potassic affinity, resulting from
crystallization of magmas generated from partial melting of metagreywacke and felsic
meta-igneous materials;

(iii) Late- to post-D3 (ca. 300 Ma)—peraluminous two-mica leucogranite with high
aluminum-potassic affinity;

(iv) Post-D3 (ca. 296 to 290 Ma)—compositionally evolved granitoids with an iron-potassic
sub-alkaline affinity as products from the partial melting of lower crustal rocks.

The geological evolution of Iberia during Paleozoic times conditioned the spatial
distribution of granitic bodies along specific crustal alignments in the CIZ (e.g., [45,56]).
The generation of the prevalent melts was roughly contemporary of the D3 folding, favoring
granite emplacement across the core of major D3 anticlines (e.g., [40]). Thermo-mechanical
contrasts developed during cooling of these granites and their country rocks, under a strong
stress regime, led to nucleation and propagation of syn-D3 shear zones, further representing
the preferred loci for strain accommodation. Locally, these tectonic discontinuities played
an essential role as conduits of melts generated and emplaced in late-, late- to post-, and post-
D3 times (e.g., [45]). The relative intensity of the regional stress field and local interferences
with stress fields related to the emplacement/cooling of granite bodies prompted the
development of several subsidiary structures which may have reactivated pre-existing
mechanical discontinuities in country rocks (e.g., [85–88]).

The known epigenetic mineralized systems in the CIZ are closely related to the
granite suites mentioned above, at least spatially (Figure 1b). This highlights the im-
portance/influence of the Variscan orogeny in the onset and development of different
metallogenic processes over millions of years, leading to the formation of distinct but spa-
tially coexistent ore systems (e.g., [84]). The spatial distribution of Sn, W, and Li occurrences
follows the dispersion of outcropping or sub-superficial granite bodies, the latter often
evidenced by contact metamorphic aureoles of variable extension and distinct mineral
associations. Although clear spatial relationships between granite suites and ore deposits,
the Sn, W, and Li mineralizing systems are not exclusively related to magmatic activity
as these ore-forming processes are multiphasic and long-lived, including the late mag-
matic stages but also fluid convection around heat spots (e.g., [14,48,84,89]). Therefore,
the granite–metasedimentary binary is relevant not only in generating some melts but
also to the constraints imposed on the production of hydrothermal fluids (volume and
composition) involved in the ore-forming processes (e.g., [90]).

The location of the main W, Sn, and Li ore systems is largely controlled by inherited
structures (such as shear zones and other structural lithospheric weakness zones) that were
also determinant for the emplacement of post-tectonic granites [91], both occurring along
granite-metasediment or diachronic granite contacts [92]. The mineralization centers may
arise in endo- and exo-contact domains, contributing to the development of geochemical
zoning patterns often described by the following sequence: Sn-Li-bearing pegmatites and
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Sn-Li-bearing quartz veins within endo-contact domains; Sn-W quartz veins scattered over
the endo/exo-contact transition, but extending preferentially to exo-contact fields; and
W-quartz veins within the exo-contact environments [93].

The Segura–Panasqueira area, the focus of this study, is characterized by a siliciclas-
tic (shale-greywacke) metasedimentary sequence belonging to the Beiras Group hosting
several voluminous granite bodies. Numerous mineral occurrences were recognized in
this area, indicating significant metallogenic potential (Figure 1b). Three main groups of
granitoid rocks are known in the Segura–Panasqueira area (Figure 2), which document two
(relatively short) events of magmatic activity favorable to the generation and emplacement
of felsic magmas [94–104]. The first group includes (i) two mica granitoids with metased-
imentary restites, (ii) biotite quartz-diorites and granodiorites, and (iii) non-porphyroid
granites and granodiorites, representing a Cambrian–Ordovician magmatic event spread-
ing for about 20 Ma (from ca. 490 Ma to 470 Ma). The two remaining groups, syn- to
late-D3 and late- to post-D3, represent a Carboniferous–Permian (late- to post-Variscan)
magmatic event which lasted for approximately 30 Ma (from ca. 320 Ma to 290 Ma). The
syn-D3 group comprises (i) porphyroid granites and granodiorites and (ii) undifferentiated
two-mica granites. The late- to post-D3 group includes (i) two-mica granites, (ii) mon-
zonitic granites with sparse feldspar megacrysts, (iii) porphyroid monzonitic granites, and
(iv) usually porphyroid biotite granites. The last group also includes the highly differ-
entiated granite rocks that are key references for granite-related ore systems, such as the
Panasqueira granite, the Li-Sn Argemela RMG and the Li-Sn-bearing aplite–pegmatites
dykes of Segura.
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Figure 2. Simplified geological map of the Segura–Panasqueira area with the sampling location. The
map integrates recent field appraisals along with outputs from previous databases [74,105–112].

3. Sampling and Analytical Methods

In the 2019–2021 period, 197 representative samples of the different granite suites and
highly differentiated granitic pegmatite and aplite veins exposed in the Segura–Panasqueira
area were collected for multi-element whole-rock geochemical characterization (Figure 2).
Sampling criteria were: (i) to complement existing data for exposed rock types by collecting
granite facies from sites where information gaps existed; (ii) to achieve a spatially repre-
sentative sampling of different outcropping igneous facies; (iii) to sample, preferentially,
along waterlines and non-vegetated river margins where the bedrock is usually better pre-
served; (iv) to gather samples from different mineralization types, to identify geochemical
fingerprints imposed by hydrothermal processes.

A total of 75 samples were collected: (i) 51 samples of felsic igneous bodies;
(ii) 18 samples of felsic igneous dykes; and (iii) 6 samples of greisen and episyenite rocks
from the Panasqueira Mine area. Although most of the samples were collected from out-
crops (58), critical drillings and mining works from Panasqueira and Argemela were also
sampled (17). Key samples representing different granite facies (poorly to highly differ-
entiated) were selected, processed, and sent to internationally accredited laboratories for
high-precision whole-rock geochemical analysis (49). Whole-rock major and trace element
concentrations were obtained at Activation Laboratories, Ltd. (Ancaster, ON, Canada),
using the 4E-research-ICP-MS analytical package. Major oxide elements were analyzed by
inductively coupled plasma optical emission spectrometry (ICP-OES). Trace and rare earth
elements (REE) were obtained by induced coupled plasma mass spectrometry (ICP-MS)
and instrumental neutron activation analysis (INAA). In addition, F, B, and FeO contents
were measured by KOH-ion chromatography, Prompt gamma neutron activation analysis
(PGNAA), and titration, respectively.

Detailed information regarding the analytical and control procedures is available in
the Actlabs website (www.actlabs.com (accessed on 21 August 2022)).

www.actlabs.com
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Afterwards, these samples were used as in-house standards for the remaining samples
analyzed with X-ray fluorescence (XRF) at the Faculdade de Ciências da Universidade
de Lisboa (Lisbon, Portugal). This analytical work used a wavelength dispersive Zetium
XRF spectrometer (Malvern PANalytical) having a 4000 W “Super Sharp X-ray Tube” with
rhodium anode and a CHI-BLUE window coating for superior light element performance.
The apparatus also has a duplex xenon detector and a scintillation detector for elements
heavier than Zn, as well as two flow (argon/methane) detectors for light and heavy
elements. The installed crystals are LiF 200, LiF 220, Ge 111, PE 002, and PX-1. The SuperQ
analytical software assisted all the measurements: the Omnian calibration for standardless
analysis and ProTrace calibration for quantitative trace element analysis. Calibration for
fully quantitative analysis of silicate-based materials were based on certified international
standards. The accuracy-related errors in XRF measurements were ≤5% for major elements
and better than 10% for the most incompatible elements. Duplicate measurements of
samples indicate that reproducibility-related errors in XRF analyses were generally ≤5%
for both major and trace elements.

4. Results

The whole-rock multi-element data of the main (composite) granite plutons and aplite–
pegmatite dykes exposed across the Segura–Panasqueira area are listed in Table S1. Facies
description, previous geochronological information (Table S1), and field relationships
indicate that the sampled rocks represent two main regional magmatic pulses: Cambrian–
Ordovician and Carboniferous–Permian (Variscan). The Cambrian–Ordovician magmatic
event is represented by the composite plutons of Zebreira [99], Oledo-Idanha-a-Nova [101],
Fundão [102,104], Batão and Matos. The Variscan magmatic event is characterized by the
Salvaterra do Extremo (Syn-D3?), Castelo Branco (Late-D3; [100]), Segura (Late-D3; [103]),
Orca (Late-D3; [113]), Penamacor–Monsanto (Late- to Post-D3; [114,115]), Capinha (Late- to
Post-D3; [113]), and Atalaia (Late- to Post-D3; [113]) plutons and a porphyry intrusion near
Zebreira (Late- to Post-D3?). It is worth noting that in all the cross-plots, the intersection be-
tween the compositional fields of the two magmatic events is mainly due to the widespread
distribution of samples representing the less differentiated facies of the Castelo Branco
pluton (CB-G2) and the more differentiated facies of the Zebreira, Oledo-Idanha-a-Nova
and Fundão plutons (G_ZEB#1 and G_ZEB#4; OIN-G3 and G4; FUN-G1 and FUN-G3). In
addition, field observations suggest that these differentiated Cambrian–Ordovician facies
are younger than the less evolved ones, often showing crisscrossing relationships and
textural fabric contrasts that point to significant differences in their emplacement timing.
Therefore, to clarify whether they are being attributed to the correct magmatic event or
correspond to late magmatic pulses of Variscan age, these differentiated facies have been
selected for future U-Pb zircon dating.

For purposes of geochemical interpretation, the aplite–pegmatite dykes from Oledo-
Idanha-a-Nova, Orca, and Penamacor–Monsanto, together with granite rocks related to
Li-Sn and W-Sn ore systems from Argemela [116], Segura, and Panasqueira [117], have
been examined separately. As these rocks are highly differentiated and have interacted
with magmatic-hydrothermal processes, they should not be used in conventional diagrams
of geochemical classification of granitic rocks. As refers to the rare earth elements, only
analyses with the lowest detection limits and complete REE patterns were considered. The
degree of the tetrad effect was estimated by the methods of quantification proposed by
Irber (1999) [18] and Monecke (2002) [28] (Tables S2 and S3). As both methods have yielded
similar results, those of the TE1,3 [18] are presented in this work, for graphic simplicity.

4.1. Major and Minor Elements

Most Cambrian–Ordovician granitoid rocks are weakly peraluminous I-type (aver-
age ASI value of 1.11), tonalite to granodiorite rocks (Figure 3). They present relatively
moderate SiO2 contents (average value 68.2 wt. %), total alkalis (average Na2O + K2O
value 6.87 wt. %) and FeOtotal/(FeOtotal + MgO) ratios (average Fe* value 0.66), with most
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samples plotting into the compositional fields of calcic to calc-alkalic series and magnesian
granites (Figure 4a,b). In turn, Variscan magmatism is represented by highly peraluminous
S-type (median ASI value 1.25), monzogranite to granite rocks (Figure 3). Variscan granite
rocks show relatively high SiO2 median content (72.7 wt. %), total alkalis (median value
of 8.12 wt. %), and FeOtotal/(FeOtotal + MgO) ratios (median content 0.79), plotting into
the compositional fields of calc-alkalic to alkali-calcic series and magnesian to ferroan
granites (Figure 4a,b). Regarding their degree of differentiation, the Cambrian–Ordovician
granitoid suites range from diorite to normal granite compositions and display condensed
differentiation trends in comparison with those typical of Variscan granites. The latter
are strongly differentiated rocks, as confirmed by their contents in Ba, Rb, and Sr (Fig-
ure 4c). Most of the Cambrian–Ordovician granitoid rocks plot in the compositional field
of volcanic arc granites, whereas the Variscan granites cluster in the field of syn-collisional
granites (Figure 5).
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Figure 3. Classification diagrams for the Cambrian–Ordovician (orange compositional field) and
Variscan (green compositional field) granite suites. (a) Q-P diagram (adapted from [118]). ad—
adamellite; dq—quartz diorite; gd—granodiorite; go—gabbro, diorite, anorthosite; gr—granite; mz—
monzonite, mzdq—quartz monzodiorite, quartz monzogabbro; mzgo—monzogabbro, monzodiorite;
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A/NK diagram (adapted from [119,120]); (c) A-B diagram (adapted from [118]). Sectors I, II, III—
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IV—metaluminous rocks with biotite + amphibole ± pyroxene. Symbols and colors in (c).
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Figure 4. Classification diagrams for the Cambrian–Ordovician (orange compositional field) and
Variscan (green compositional field) granite suites. (a) SiO2 vs. Fe* diagram (adapted from [121]);
(b) SiO2 (wt. %) vs. MALI diagram (adapted from [121]); (c) Ba-Rb-Sr ternary diagram (adapted
from [122]). AG—Anomalous Granites; NG—Normal Granites; SDG—Strongly Differentiated Granites.
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Figure 5. (a) Y+Nb vs. Rb; and (b) Y vs. Nb tectonic discrimination diagrams for the Cambrian–
Ordovician (orange compositional field) and Variscan (green compositional field) granite suites
(adapted from [123]). VAG—Volcanic Arc Granites; syn-COLG—syn-Collisional Granites; WPG—
Within-Plate Granites; ORG—Ocean-Ridge Granites. Same symbols and colors as in Figure 4.

As previously mentioned, the deviations of the Cambrian–Ordovician granitoids
towards Variscan magmatism compositions are exclusively registered in the late facies
of the Zebreira, Oledo-Idanha-a-Nova, and Fundão plutons. These rocks are moderately
peraluminous S-type (average ASI value of 1.23), monzogranite to granite rocks (Figure 3).
They also present high SiO2 (average content 73.9 wt. %), total alkalis (average content
8.34 wt. %), and Fe* ratios (average value 0.82) values, thus corresponding to the calc-alkalic
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to alkali-calcic granitic series and plotting in the fields of magnesian to ferroan granites
(Figure 4a,b). As to their tectonic settings and magmatic differentiation degree, these facies
display the compositional features of syn-collisional and strongly differentiated granites
(Figures 4c and 5).

Considering the A-B classification diagram for felsic rocks of Debon and Lefort
(1988) [118], modified by Cuney (2014) [124] and Romer and Pichavant (2020) [20], it
is possible to classify the highly differentiated granitic rocks along the evolution path
of the aluminum saturation index, during magmatic fractionation. This diagram con-
siders Fe-Mg minerals and aluminosilicates (e.g., muscovite, topaz, cordierite, garnet,
biotite, amphibole, pyroxene), and usually only the highly evolved rare-metal granites
and aplite–pegmatite dykes deviate from the origin of the diagram (point of extreme frac-
tional crystallization) to higher A values. The granite facies and aplite–pegmatite dykes of
Argemela, Panasqueira, Segura, Oledo-Idanha-a-Nova, Orca, and Penamacor–Monsanto,
follow the typical fractionation trend of S-type granites, falling mostly in the leucogranite
field, near the RMG composition. The deviation from this general trend is essentially justi-
fied by the geochemical composition of the Panasqueira greisen, Argemela RMG and aplite–
pegmatite dykes from Argemela and Segura that display variable A values, reflecting late
magmatic-hydrothermal interaction and/or strongly peraluminous melt compositions capa-
ble of stabilizing muscovite, lepidolite, Li-Al-phosphates (montebrasite-amblygonite), and
topaz (Figure 6).
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4.2. Trace Elements

The Upper Continental Crust-normalized (UCC) [125], multi-element patterns are
drawn for the Cambrian–Ordovician and Variscan granitoids in Figure 7a,b. They are
mostly characterized by positive anomalies in P, Li, B, Cs, Ta, and U, and negative anomalies
in Ba, Zr, and Th, usually much more evident for the granitoids representing the Variscan
magmatic event. In addition, the Variscan granitoid facies display positive anomalies in
Be and Sn and negative anomalies in F, Rb, and Y. Regardless of the type of anomalies,
these two magmatic sets show UCC-normalized patterns with substantial enrichment in P,
F, Be, Li, B, Rb, Cs, Ta, Sn, W, and U, and depletion in Ba, Sr, Zr, Hf, Th, and Y, especially
significant in the Variscan granite facies. The highly differentiated granite facies and aplite–
pegmatite dykes are characterized by positive anomalies in P, Be, Li, Rb, Ta, Sn, Hf, and
U, and negative anomalies in F, B, Ba, Zr, Th, and Y (Figure 7c). Besides similar relative
enrichments and depletions to those observed in the granite facies from the Cambrian–
Ordovician and Variscan magmatic events, the highly differentiated granite facies and
aplite–pegmatite dykes also record very high enrichments in Nb. In general, all elemental
anomalies are more pronounced in the differentiated granite facies and aplite–pegmatite
dykes, especially those concerning P, F, Be, Li, Ta, and Sn enrichment.
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Figure 7. Upper Continental Crust-normalized multi-element concentration patterns for the
(a) Cambrian–Ordovician granitoids (orange compositional field); (b) Variscan granitoids (green
compositional field); and (c) highly differentiated granite facies and aplite–pegmatite dykes (pink
compositional field). Upper Continental Crust (UCC) normalization values after [125]. Symbols and
colors in (c).

4.3. Rare Earth Elements

Rare earth elements (REE) data are summarized in Table S2. The chondrite-normalized
(CN) [126] patterns show that rocks representing the Cambrian–Ordovician and the Variscan
magmatic events display wide REE concentration ranges (ΣREE = 10.4 to 172.0 ppm and
ΣREE = 8.9 to 194.6 ppm, respectively), but present similar chondrite-normalized pat-
terns (Figure 8a,b). Both patterns are negatively sloped, showing light rare earth elements
(LREE) enrichments relative to heavy rare earth elements (HREE) (La/YbCN = 1.7 to 18.77
and La/YbCN = 1.8 to 25.6, respectively), with different degrees of HREE fractionation
(Dy/YbCN = 0.8 to 2.6 and Dy/YbCN = 1.3 to 4.1, respectively) and negative Eu anomalies
(Eu/Eu* = 0.3 to 1.0 and Eu/Eu* = 0.1 to 0.6, respectively) that tend to be more pronounced
in the samples from the Variscan granite suites. The similarities in REE fractionation
observed in the samples from Cambrian–Ordovician and Variscan suites, with slight differ-
ences in the HREE, explain the comparable degrees of the tetrad effect, though Variscan
granites record slightly higher values (TE1,3 = 0.95 to 1.20 for the Cambrian–Ordovician
suite; TE1,3 = 0.99 to 1.30 for the Variscan suite). In this regard it should be noted that
lowermost ΣREE whole-rock contents are typical of highly differentiated samples, con-
ceivably representing extremely fractionated residual melts formed/extracted after the
early crystallization of REE-incorporating minerals (such as monazite) in parental granitic
magmas. Some of these samples were also lately subjected to significant compositional
changes triggered by high-temperature hydrothermal processes, as discussed in Section 5.
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Figure 8. REE Chondrite-normalization diagram for the (a) Cambrian–Ordovician granitoids (orange
compositional field); (b) Variscan granitoids (green compositional field); Highly differentiated granite
facies and aplite–pegmatite dykes (red compositional field) with (c) M-type patterns; and (d) W-type
patterns, highlighted by dashed lines. Chondrite normalization values after [126].

Considering the chondrite-normalized patterns of the highly differentiated granite
facies and aplite–pegmatite dykes, it is possible to distinguish two main groups (Figure 8c).
The first group includes the Panasqueira Greisen and Granite facies, the Segura Li-Sn
lepidolite–bearing aplites, the Penamacor–Monsanto pegmatite, the Orca pegmatite, and the
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Oledo-Idanha-a-Nova aplite–pegmatite dykes and is typified by M-type (convex) chondrite-
normalized patterns. These felsic rocks have wide-ranging REE contents (ΣREE = 0.6
to 83.8 ppm), negatively sloped chondrite-normalized patterns (La/YbCN = 1.5 to 12.5),
slightly flat HREE patterns (Dy/YbCN = 0.3 to 1.9) and pronounced negative Eu anomalies
(Eu/Eu* = 0.1 to 1.6, average value of 0.5), being characterized by significant degrees of
tetrad effect (TE1,3 = 1.01 to 1.38). The second group comprises the rare metal granite
and aplite–pegmatite dykes from Argemela and the Li-phosphates-bearing pegmatite
dykes from Segura, being mostly characterized by W-type (concave) chondrite-normalized
patterns. These highly differentiated rocks have low REE contents (ΣREE = 0.5 to 4.3 ppm),
positively to negatively sloped chondrite-normalized patterns (La/YbCN = 0.4 to 24.0), low
HREE fractionation (Dy/YbCN = 0.5 to 1.5), moderate negative to strongly positive Eu
anomalies (Eu/Eu* = 0.4 to 1.8) and extremely low TE1,3 values (0.71 to 1.05), consistently
documenting the absence of a tetrad effect [18]. The implication of considering two different
geochemical groups and its relevance for the exploration of W-Sn-Li granite-related ore
deposits will be discussed in the following section.

5. Discussion
5.1. Magmatic Differentiation and Metal Specialization: Correlation with TE1,3

The degree of differentiation and metal specialization of the granitoid suites was
necessary to evaluate before assessing the usefulness of the TE1,3 parameter as a marker of
granitic magma differentiation and as an exploration tool for granite-related rare metal ore
systems. For that purpose, (i) the Nb/Ta, K/Rb, Y/Ho, Sr/Eu, Eu/Eu*, Zr/Hf, and Rb/Sr
ratios were considered as geochemical magmatic differentiation markers; (ii) the values
Nb/Ta < 5, K/Rb < 150, Y/Ho > 28, Sr/Eu > 200, and Eu/Eu* < 0.1 were used as indicators
of significant magmatic-hydrothermal processes [4,18,127]; and (iii) the representative com-
positions of granite suites with different degrees of differentiation and metal-enrichments
from other sectors of the Variscan orogenic belt (Table S3) were plotted to ascertain the
representative geochemical trends on the basis of a wide and robust dataset. The chosen ref-
erence granite suites include: the Cambrian–Ordovician Beira-Extremadura Batholith [128];
the Armorican Massif, the Erzgebirge–Fichtelgebirge, and Cornwall Variscan granites ([4]
and references therein); the Variscan Penouta Sn-Ta-Nb RMG [129]; and several other
Iberian Variscan granites ([4] and references therein, [130]).

Granite facies with low Nb/Ta ratios also tend to display low K/Rb, Eu/Eu* and Zr/Hf
ratios, and high Y/Ho, Sr/Eu, and Rb/Sr ratios (Figure 9), showing a clear correlation
between the different element ratios. Moreover, a remarkable compositional similarity is
observed between the studied samples and the published data for similar rocks from other
Variscan crustal segments (Figure 9). Whereas most of the weakly peraluminous Cambrian–
Ordovician rocks represent the less evolved facies, the highly peraluminous Variscan
granite facies and late aplite–pegmatite dykes are strongly differentiated and significantly
affected by magmatic-hydrothermal processes (Figure 9a–d,f). The most evolved rocks are
the granite facies of Segura, Salvaterra do Extremo, Penamacor–Monsanto, Panasqueira,
Argemela, and Penouta and the aplite–pegmatite dykes from Oledo-Idanha-a-Nova, Segura,
Penamacor–Monsanto, and Argemela. Additionally, the Nb/Ta vs. Zr/Hf [19,127] and
Rb/Sr vs. Sn [20,127] ratios can also be considered geochemical indicators of the fertility
of granitic rocks, distinguishing barren granites from Sn-W(-U)-specialized granites and
(Ta-Cs-Li-Nb-Be-Sn-W)-enriched/related granites. Cambrian–Ordovician magmatism is
essentially characterized by barren granites, whereas Variscan magmatism tends to be more
fertile, especially for Sn-W-(U) granite-related ore deposits. The more evolved rocks and
those most affected by late magmatic-hydrothermal fluids display the specialized features
of Ta-Cs-Li-Nb-Be-Sn-W granite-related ore systems. Among the samples of the latter
suite, the granite facies of Argemela and Penouta, as well as the aplite–pegmatite dykes of
Argemela and Segura, are the most specialized (Figure 9e,f). Granite differentiation, and
subsequent compositional modifications ascribed to magmatic-hydrothermal processes,
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have led to progressive enrichment in granitophile elements, such as Sn, Li, Nb, Ta, Be, and
Cs (Figure 10a–f).
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Figure 9. Diagrams showing the variation of key trace element ratios for granite facies exposed in
the Segura–Panasqueira area, evidencing different degrees of differentiation, late-stage magmatic-
hydrothermal interactions, and metal specialization. (a) K/Rb vs. Nb/Ta; (b) Y/Ho vs. Nb/Ta;
(c) Sr/Eu vs. Nb/Ta; (d) Eu/Eu* vs. Nb/Ta; (e) Zr/Hf vs. Nb/Ta diagram separating barren
and ore-related peraluminous granites (adapted from [19]). (f) Rb/Sr vs. Sn diagram evidencing
the enrichment in Sn with increasing degree of differentiation (adapted from [20]). This diagram
discriminates biotite granites from Sn-specialized granites, and compositional deviations related
to late-stage melt-hydrothermal transition (yellow arrows). These diagrams include the represen-
tative compositional fields of other granite suites, namely from: the Cambrian–Ordovician Beira-
Extremadura batholith (pink compositional area, [128]); the Armorican Massif (grey compositional
area, [4] and references therein); the Iberian Massif (greenish-yellow compositional area, [4] and refer-
ences therein, [130] and references therein), the Erzgebirge–Fichtelgebirge (solid dark grey line, [4]
and references therein); Cornwall (black compositional area, [4] and references therein) and the
Penouta RMG (dashed greenish-yellow line, [4] and references therein). The black dashed lines
represent reference values of Nb/Ta < 5, K/Rb < 150, Y/Ho > 28, Sr/Eu > 200 and Eu/Eu* < 0.1,
normally displayed by peraluminous granites that have experienced significant interaction with
high-temperature hydrothermal fluids [4,18]. Symbols and colors in (b).
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Figure 10. (a–f) Selected trace element contents vs. K/Rb ratios for the granite facies exposed across
the Segura–Panasqueira area, evidencing different degrees of differentiation (K/Rb) and enrichment
in common rare metals in granite-related ore systems (Sn, Li, Nb, Ta, Be, and Cs). It should be noted
that the granite rocks in this study present low W contents (≤50.44 ppm), often below the detection
limits of the analytical methods used, and therefore W has not been considered. (g) K/Rb vs. TE1,3,
showing the correlation between granite differentiation and the degree of the tetrad effect; Repre-
sentative compositional fields for other granite suites are plotted as in Figure 9. Black dashed lines
represent reference values of K/Rb < 150 and TE1,3 > 1.1, usually displayed by peraluminous granites
that have experienced significant interaction with high-temperature hydrothermal fluids [4,18].
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The increase in TE1,3 values tends to correlate with magmatic differentiation and metal-
enrichment, as documented by the contrast between the poorly differentiated Cambrian–
Ordovician granite suites, with the lowest TE1,3 values (≤1.2), and the Variscan granite
facies, showing gradually higher TE1,3 (up to 2.1-Penouta RMG) (Figure 10g). Although
the Li-phosphate-bearing Argemela RMG and the aplite–pegmatite dykes from Argemela
and Segura present the highest differentiation degrees and metal enrichment, they deviate
from this geochemical trend, showing no evidence of tetrad effect (TE1,3 < 1.1). Moreover,
it is worth highlighting that, based on the TE1,3 parameter there is a clear distinction
between these Li-phosphate-bearing dykes and the lepidolite–bearing aplites from Segura,
which follow the general trend. As suggested by Irber (1999) [18], the development of
the lanthanide tetrad effect (M-type) with pronounced negative Eu* in highly evolved
granitic rocks implies the removal of a mirroring REE-pattern (W-type) with positive Eu*,
corresponding to a coexisting high-temperature aqueous fluid. Therefore, although most of
the granite facies considered are characterized by the REE signatures of silicate melts with
gradually higher degrees of differentiation, the Argemela RMG and the Li-phosphates-
bearing aplite–pegmatite dykes from Argemela and Segura show compositional signatures
comparable with those expected for high-temperature aqueous fluids, as indicated by
the absence of the tetrad effect (TE1,3 < 1.1) and by the tendency of Eu* anomalies to be
positive (Figure 9d).

5.2. The TE1,3 as an Exploration Vector for Granite-Related Ore Systems

In many granite systems, differentiation leads to a gradual enrichment of fluxing
components (H2O, P, F, B) in the melt that, for extreme fractionation, might be completed by
segregation of an H2O-saturated melt and a high-temperature aqueous fluid [116,131–133].
Crystallization of highly evolved silicate melts coexisting with aqueous high-temperature
fluids results in important changes in the geochemical behavior of many elements. During
primary unmixing, rare metal concentrations are no longer exclusively controlled by ionic
radius and charge but also by the partition between magma and the fluid phase [4,16,18,134].
Thus, to understand how the REE fractionation signatures in Li-Sn, W-Sn, and Sn-Ta-Nb
granite-related ore systems are influenced by these magmatic-hydrothermal processes and
relative predominance of P, F, and B, it is important to evaluate their correlation with TE1,3
(Figure 11). To this end, three main geochemical trends can be distinguished, as a function
of the REE-bearing accessory minerals (e.g., apatite, monazite, zircon, xenotime, fluorite,
and garnet). The TE1,3 value of the pristine melt may explain the features of the unmixed
high-temperature aqueous fluid [18].

The first trend depicts magmatic-hydrothermal systems dominated by P and F (P + F ± B,
P > F) analogous to those typified by the Li-Sn Argemela RMG and the Li-phosphate-
bearing aplite–pegmatites from Segura. In these peraluminous-high-phosphorus (PHP)
systems, with high P2O5 and Li contents (up to 4.76 wt. % and 1.27 wt. %, respectively)
and low ranges of CaO (≤0.85 wt. %), phosphate is firstly present as apatite, and the
phosphorus excess at a given CaO content formed a phosphate from the amblygonite-
montebrasite series. The strong negative correlation between P2O5 and TE1,3 suggest that
Na-Li phosphates incorporate REE from the fluid.

The second geochemical trend describes peraluminous-high-phosphorus magmatic-
hydrothermal systems dominated by F and P (F + P ± B, F > P), comparable to those
represented by the W-Sn Panasqueira Granite facies and the Li-Sn, lepidolite–bearing
aplites from Segura. These highly evolved rocks have slightly higher contents of F (up to
2300 ppm) and CaO (up to 1.7 wt. %) and lower P2O5 contents (≤1.94 wt. %), ordinarily
expressed by the presence of fluor-apatite. In such cases, Li is usually incorporated in micas
and not in phosphate. For these magmatic-hydrothermal systems, the typically high TE1,3
values match those of highly evolved silicate melts interacting with aqueous fluids (up to
1.4), and fluor-apatite acts as the primary REE-bearing mineral, as suggested by the positive
correlation of P2O5 and F with TE1,3.
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Figure 11. Variation of the tetrad effect (TE1,3) vs. (a) P2O5 (wt. %), (b) F (ppm), and (c) B (ppm),
showing the influence of the increasing concentration in fluxing elements on REE fractionation. Three
main compositional trends are distinguished, representing magmatic-hydrothermal systems related to
different types of mineralization: (i) Peraluminous High-Phosphorus Li-Sn magmatic-hydrothermal
systems dominated by P + F ± B (P > F), in which Li is primarily incorporated in phosphate mineral
phases; (ii) Peraluminous High-Phosphorus W-Sn-Li magmatic-hydrothermal systems dominated by
F + P ± B (F > P) and variably enriched in Li-bearing micas; and (iii) Peraluminous Low-Phosphorus
Sn-Nb-Ta magmatic-hydrothermal systems dominated by F + B ± P (F > B). Representative composi-
tional fields of granitoid suites are plotted: the Cambrian–Ordovician Beira-Extremadura batholith
(pink compositional area [128],); the Armorican Massif (grey compositional area [4], and references
therein); the Iberian Massif (greenish-yellow compositional area [4], and references therein [130], and
references therein); Erzgebirge–Fichtelgebirge (solid dark grey line [4], and references therein); Corn-
wall (black compositional area, [4] and references therein), the Penouta RMG (dashed greenish-yellow
line [4], and references therein) and Beauvoir (blue compositional area). Black dashed lines represent
reference values of TE1,3 > 1.1 normally displayed by peraluminous granites that show effects of
significant interaction with high-temperature aqueous fluids [4,18]. Due to incomplete analytical
data, samples from the Beira-Extremadura batholith, the Iberian Massif, Erzgebirge–Fichtelgebirge,
Cornwall and the Penouta RMG are not plotted on all diagrams. For the same reason, the Beauvoir
data are only plotted in the diagrams (a,b) of this figure. Symbols and colors in (a).
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The third compositional trend describes peraluminous-low-phosphorus (PLP) magmatic-
hydrothermal systems, dominated by F and B (F + B ± P, F > B), as those illustrated by the
topaz-, tourmaline-, and garnet-bearing granites related to Sn-Ta-Nb ore systems such as
the cases of the Penouta RMG and the granite facies of Erzgebirge–Fichtelgebirge and of
Penamacor–Monsanto. These highly differentiated rocks are characterized by the highest
TE1,3 values (up to 2.1), probably inherited from the highly evolved silicate melt coexisting
with a late magmatic-hydrothermal fluid; topaz and other F-rich phases are the prevalent
mineral proxy, as shown by the co-variation between F contents and TE1,3 values.

In summary, the degree of the lanthanide tetrad effect is a useful whole-rock geo-
chemical fingerprint of granite differentiation for silicate magmatic-hydrothermal systems
dominated by F and B and with strong granitic magma REE signatures. In such cases
the TE1,3 correlates positively to increasing granite differentiation. For late magmatic-
hydrothermal systems dominated by P and F, represented by the Li-phosphate-bearing
rare-metal granites and the aplite–pegmatites dykes, the negative correlation between
high degree of differentiation and low values of the degree of the tetrad effect (TE1,3 < 1.1)
suggest that these rocks have strong REE signatures of high-temperature aqueous flu-
ids. It is also recommended that the TE1,3 values may be considered an exploration
vector for different types of granite-related ore systems when plotted against P2O5 (wt.
%). Magmatic-hydrothermal systems may be therefore divided into three distinct trends:
(i) Li-Sn, Li-phosphate-bearing granite-related ore systems; (ii) W-Sn-Li, fluorapatite- and
lepidolite–bearing granite-related ore systems; and (iii) Sn-Nb-Ta topaz-, tourmaline- and
garnet-bearing granite-related ore systems.

6. Conclusions

The comprehensive geochemical characterization of the main plutons and late aplite–
pegmatite dykes exposed across the Segura–Panasqueira Sn-W-Li belt (Central-Iberian
Zone) show that the Cambrian–Ordovician and Carboniferous–Permian granite suites:
(i) display different degrees of differentiation and metal-enrichment, and (ii) their compo-
sitional features compare well with data published for similar rocks from other Variscan
segments. Increasing TE1,3 values (up to 1.4) correlate with magmatic differentiation
and metal-enrichment, and the Carboniferous–Permian granites are more differentiated,
and metal specialized. The Li-Sn ore systems, Li-phosphate-bearing, Argemela RMG
and aplite–pegmatite dykes from Segura deviate from this geochemical trend, display-
ing TE1,3 values < 1.1, but also high P2O5 contents. It is then suggested that TE1,3 values
and P2O5 (wt. %) contents can be used together to distinguish three different magmatic-
hydrothermal systems: (i) dominated by P + F ± B (P > B), with strong aqueous high-
temperature REE signatures, and related to peraluminous-high-phosphorus Li-Sn granites
and Li-phosphates-bearing aplite–pegmatite dykes (TE1,3 < 1.1); (ii) dominated by F + P ± B
(F > P) and related to W-Sn-Li peraluminous-high-phosphorus granites and lepidolite–
bearing aplite–pegmatite dykes (TE1,3 up to 1.4); and (iii) dominated by F + B ± P (F > B)
and related to peraluminous-low-phosphorus Sn-Ta-Nb granites (TE1,3 up to 2.1). Such
data also suggest that the degree of the lanthanide tetrad effect can be a useful geochemical
fingerprint of granite differentiation and an exploration vector for different granite-related
ore systems.
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