

http://doi.org/10.54499/ERA-MIN/0002/2019 https://mostmeg.rd.ciencias.ulisboa.pt/

Tin ores and fluids in the Segura district: from magmatic to hydrothermal stages

Marie-Christine Boiron, Alexandra Guedes, Alina Yakovenko, Michel Cathelineau, Gnieneman Yeo, Chantal Peiffert, Andrei Lecomte

Sn ores in Segura dykes

Cassiterite disseminated in hyper-differentiated dykes (aplites and pegmatites) Hyperfluid magmas enriched in Li, F, P (Sn, Nb-Ta)

Meter thick dykes croscutting the sub -vertical schist foliation

Leucocratic Albite-Quartz-Kfeldspar association with Nb-Ta-(Sn) oxides

Sn - Nb – Ta oxides in the dykes

Cassiterite - second stage in the dykes

Second stage of cassiterite formation : large euhedral crystals in lepidolite-rich altered dykes

Cerro Queimado

Quartz types (southern zone)

Q1A – Large crystals of a clear quartz with fractures Q1B – Subhedral clear mosaic quartz slightly recristallized in the borders

Cerro Queimado

Quartz type : Q2 (northern zone)

Q2 – anhedral clear quartz with some recrystallization

Composition of the volatile phase

The abundant fluid inclusions dominated by methane occurs only in the northern zone (Cerro Queimado)

Bulk composition of fluids

2 constrasted fluid compositions :

- aqueous fluids with minor volatiles

- volatile rich vapours : with two sub-types, one rich in methane, and the other rich in CO₂

Milky quartz with minor arsenopyrite

The tin mine of Segura

Sub-horizontal quartz veins, with abundant microfractures Crosscutting subvertical schist foliation

SEGURA - the Sn mineralisation

As

Quartz-Stannite Cu₂FeSnS₄

Quartz vein with stannite, sphalerite, arsenopyrite, native Bi, Ag-Bi-sulphide and minor covellite and SnO₂ as alteration products.

Stannite close to stoechiometry : Cu₂Fe(Zn)SnS₄

Iron	13 % Fe	11.2	11.2	11.2
<u>Copper</u>	29.5 % Cu	28.6	29.2	28.5
Zinc		4.3	2	2.1
<u>Tin</u>	27.6 % Sn	26.1	27.1	26.8
<u>Sulfur</u>	29.8 % S	29.5	29.4	29. 1

Old Mine - sample SEG-M-Sn

Lw-n(m-c)

SEGURA- sample SEG-7X - close to stannite

Aqueous – carbonic inclusions Lw-c (m-n) and Lw-n (m-c)

Old W prospect

W Ars (arsenopyrite-quartz)

Dominant aqueous Inclusions

Some inclusions with the presence of gas N_2 80mol.% and CH_4 20 mol.% No CO_2 $\ensuremath{\mathsf{No}}$

Moderate to low salinity fluids

SEGURA- Sn and W prospection or mining zones

Decreasing salinity and decreasing minimal trapping temperature

SEGURA - all data

Sn and W mining zones

Composition of the volatile phase

Composition of the volatile phase- SEGURA area - all data

No evidence of magmatic fluids as in many other Sn-W prospects, even in dykes

•Lack due to quartz recrystallization ? Or quasi-absence ?

SEGURA- Sn and W prospection or mining zones

Main conclusions

Sn ores in Segura dykes : Two stages of Sn mineralisation

- Cassiterite disseminated in hyper-differentiated dykes, Sn Nb Ta oxides in the dykes
- Large euhedral crystals of cassiterite in lepidolite-rich altered dykes

Sn ore in micaschists : Old Mine Sn and W-prospects

• Quartz vein with stannite, sphalerite, arsenopyrite, native Bi, Ag-Bi-sulphide

Composition and origin of the fluids

Sn- ores

- Predominant metamorphic fluids (H₂O-CO₂ rich fluids, low density of the volatile phase) associated to Sn ores
- Methane-rich vapor in the dyke from Cerro Queimado
- Change in the composition of the volatile phase: increase of the CH₄ and N₂ content, Temperature decreases from 400 to 270°C, sub-constant pressure around 50 MPa

W- ores

 H_2O-N_2 (CH₄) rich fluids (No CO₂) 150-200 MPa and 300-350°C

No evidence of magmatic fluids as in other Sn-W prospects, even in dykes