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Mineral ocurrences

(Sn-W)
1 – Vale Moreiro – Casal Loureiro
2 – Senhora da Guia
3 – Rabadão
4 – Vale Pião
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(Au-Ag)
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16 - Alvares

(Sb-Au)
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(Manuel et al. 2017)
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(I. Fernandes 2020)
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Góis – Vale Pião Tourmaline
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▪ W quartz veins
▪ W(Sn) quartz veins
▪ Sn(W) quartz veins
▪ Sn greisen

SW NE

Panasqueira W-Sn-(Cu) deposit



Simplified paragenitic sequence of Panasqueira deposit

(Mateus et al. 2020)



(Mateus et al. 2020)
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Granite Qz vein/breccia Tourmalinite

(Ribeiro da Costa et al. 2014)



Tourmaline from magmatic rocks

Magmatic differentitaion
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Sub-horizontal Sn-W quartz vein system similar to Panasqueira 

(M. Ferreira 2021)
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What about minor and trace elements?
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Part II – TiO2 polymorphs
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(Gracio, 2020) 

Alluvial heavy mineral relative abundance maps



  V Cr Fe Sn Nb Ta W Zr Nb/Ta Nb+Ta Sn+W

Rútilo (ppm)

Mínimo < 205 < 196 < 194 < 350 < 312 < 1199 < 1212 < 279 0,4 0 0

Máximo 10937 4201 29258 55665 85347 19139 57173 1577 41,6 93283 75022

Média 1712 168 5882 4462 5723 890 5126 68 3,9 6613 9588

Mediana 1271 0 4508 882 3845 0 1491 0 2,9 4201 3357

Desvio Padrão 1388 370 5196 7900 6269 1990 8898 163 4 7425 13366

Anátase (ppm)

Mínimo < 198 < 196 < 188 < 354 < 302 < 1143 < 1103 < 270 0 0 0

Máximo 5289 1006 17699 4892 12296 16895 10523 992 9,7 26822 13546

Média 754 23 472 85 1575 261 694 99 1,3 1837 779

Mediana 877 0 894 0 1139 0 0 0 0,9 1265 0

Desvio Padrão 545 88 280 387 1510 833 1566 193 1,4 1951 1648

Brookite (ppm)

Mínimo < 195 < 189 < 184 < 336 < 296 < 113 < 145 < 268 0 0 0

Máximo 2855 1526 9553 6333 4649 2334 3457 459 13,5 4649 7221

Média 762 141 2268 123 1082 401 373 42 1,8 1483 496

Mediana 714 0 1780 0 811 0 0 0 1 1232 0

Desvio Padrão 622 236 1748 640 862 575 633 115 2,4 940 915

(Grácio, 2020) 

Trace element geochemistry of rutile and anatase EMP data
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(Mallmann et al., 2014) 
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Alteration of Ti-rich phases

After Meinhold (2010) 

𝐶𝑎𝑇𝑖𝑆𝑖𝑂5 + 𝐶𝑂2 = 𝑇𝑖𝑂2 + 𝐶𝑎𝐶𝑂3 + 𝑆𝑖𝑂2

Ilmenite

Titanite

Ti-magnetite

Biotite

𝐹𝑒𝑇𝑖𝑂3 + 𝑆2 = 𝐹𝑒𝑆2 + 𝑇𝑖𝑂2

2 𝐹𝑒, 𝑇𝑖 3𝑂4 + 𝑆2 = 𝐹𝑒3𝑂4 + 𝐹𝑒𝑆2 + 𝑇𝑖𝑂2

𝐾 𝐹𝑒,𝑀𝑔, 𝑇𝑖 3 𝑆𝑖3𝐴𝑙 𝑂10 𝑂𝐻 2 + 𝑆2
= 𝐾 𝑀𝑔,𝐹𝑒 3 𝑆𝑖3𝐴𝑙 𝑂10 𝑂𝐻 2 + 𝐹𝑒𝑆2
+ 𝑇𝑖𝑂2
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Carocci et al. (2019)

Rutile – Panasqueira deposit 
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Exploration Tools – Trace Element Vectoring/Fingerprints

(Clark & Williams-Jones, 2004) 

Projet DIVEX SC2 – Williams-Jones:  Rutile as an indicator mineral for metamorphosed metal deposits 
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Fig. 3.  Summary of  Sn concentrations in rutile from variably 

metamorphosed Canadian (mainly from Québec) VMS base 

metal deposits, indicating that most ore zone (red squares) 

and subore/alteration zone (yellow diamonds) rutile contains 

strongly elevated values of Sn, compared to unaltered 

wallrock rutile (blue triangles).  The dashed line represents a 

projection of the 0.02 wt% detection limit  for SnO2. 

 

 

The deposit for which we have the most extensive 

dataset is Hemlo, Ontario, which is one of the largest 

gold deposits currently exploited in Canada.  As noted 

earlier, the idea of rutile as a potential indicator mineral 

was stimulated by the observation that rutile at the 

Hemlo Au-Mo deposit contains strongly elevated 

concentrations of W, Sb and V (each up to several wt% 

as oxide).  Figure 4 illustrates these substitutions, as 

well as the fact  the rutile grains that contain the most 

W and Sb also tend to be associated with higher grade 

ore.  However, there is considerable overlap of gold 

grades with W and Sb concentrations due to post-ore 

remobilization events. Hemlo rutile is also distinctive in 

that it has elevated V concentrations, and in fact is one 

of only a few deposits (the others are Big Bell and 

possibly Red Lake) where V enrichment is significant.  

As shown in Figure 4, virtually all ore zone rutile 

contains anomalous W and Sb (98 and 100 % of 

analysed grains, respectively).  When W and Sb are 

combined, all rutile associated with bulk rock values of 

>3 g/t Au is very strongly anomalous compared to rutile 

from least altered wallrocks.  It is also noteworthy that 

rutile is only stable in the ore and alteration zones of the 

deposit; ilmenite is the stable Ti-oxide mineral in the 

surrounding upper amphibolite grade host rocks, which 

limits the availability of wallrock rutile for analyses. 

 

The Red Lake Au deposit in Ontario has received 

considerable attention from explorationists recently, 

due to the high grade nature of its ore.  Like Hemlo, the 

deposit is hosted by strongly metamorphosed rocks 

(upper greenschist to amphibolite facies), and it appears 

that Red Lake is remarkably similar in terms of rutile 

composition; both deposits contain strongly elevated 

concentrations of W and Sb (and probably V).  Red 

Lake rutile from well-mineralized rocks averages 0.64 

wt% WO3 and 0.65 wt% Sb2O5, and 100 % of all rutile 

grains in both ore and subore rocks are anomalous in W 

and Sb.  Vanadium also appears to be elevated in Red 

Lake rutile, but enrichments cannot be quantified as 

unaltered wallrock samples have not been analysed.  

Another Au deposit hosted by amphibolite grade rocks 

is Big Bell (Australia), which also contains rutile with 

high concentrations (up to several wt% as oxide) of W, 

Sb and V.  Again, 100 % of rutile grains from the ore 

zones contain anomalous W and Sb, and 70 % of 

subore rocks are anomalous in W. 

 

Abitibi-type mesothermal gold deposits in relatively 

low grade metamorphic rocks usually contain rutile, 

and in some cases, rutile is quite abundant in 

mineralized zones adjacent to and as inclusions within 

veins, as well as the surrounding unaltered wallrock.  

One example is the Siscoe Au deposit (Québec), where 

the C-vein is associated with rutile that exhibits 

moderately to strongly elevated concentrations of W.  

Rutile in unaltered wallrock contains no detectable W, 

and 65 % of grains from ore grade material are 

anomalous.  Similarly, at the East Amphi Au deposit 

(Québec), rutile contains moderately but erratically 

elevated concentrations of W.  Rutile from weakly 

mineralized talc-chlorite schist adjacent to the deposit 

contains negligible W, and again, this element in rutile 

from the unaltered wallrock is below the detection limit. 

 Fifty-eight percent of rutile grains from ore grade 

material contain significant tungsten.  North of these 

deposits, the Géant Dormant Au mine contains rutile 

with an average of 0.09 wt% WO3 in ore zone rocks, 

and 0.23 wt% WO3 in subore/altered rocks.  The greater 

concentrations of W in subore rocks is likely a simple 

function of the limited dataset for well-mineralized 

samples, although only 50 % of ore zone rutile and 42 

% of subore rutile in anomalous in W.  In most deposits 

hosted by lower grade metamorphic rocks, rutile 

compositions are more erratic than those in higher (i.e., 

amphibolite and above) grade rocks.  As indicated by 

the distribution of W (compare Hemlo to Abitibi area 

deposits), metamorphism tends to homogenize metal 

substitution in rutile.   

 

The Quévillon area hosts the Lac Bachelor and Lac 

VMS

Zn-Cu

Projet DIVEX SC2 – Williams-Jones:  Rutile as an indicator mineral for metamorphosed metal deposits 
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Fig. 4. Rutile compositions for the Hemlo Au-Mo deposit, Ontario, showing strongly elevated concentrations of W and Sb.  Red 

squares are ore zone samples (>3 g/t Au), yellow diamonds are weakly mineralized (<3 g/t Au) and/or altered samples, and blue 

diamonds are least altered wallrock samples. The dashed lines represent projections of the 0.04 wt% WO3 and 0.02 wt% Sb2O5 

detection limits, respectively.  Hemlo rutile is also enriched in V, which causes scatter toward the (Fe+Cr+V) apex.  The combination 

of W and Sb provides clear discrimination of all rutile grains from the ore and alteration zones. 

 

 

Madeleine Au mines.  Rutile from Lac Bachelor ore 

zones contains an average 0.17 wt% WO3, and that 

from adjacent alteration zones 0.03 wt% WO3.  

Wallrock samples were not available from Lac 

Bachelor, but at the Lac Madeleine deposit, wallrock 

rutile contains no detectable W.   A total of 73 % of 

rutile grains from Lac Bachelor contain rutile with W 

values above the detection limit, as do 32 % of rutile in 

subore samples. 

 

A limited number of analyses were conducted on rutile 

from the Muruntau (Uzbekistan), a major gold deposit 

hosted by upper greenschist to amphibolite grade rocks. 

 Unfortunately, only subore samples were available, 

and the rutile contains W values that are near or below 

the lower detection limit.  However, since scheelite is a 

common mineral in the deposit, it is likely that a more 

representative suite of mineralized samples would yield 

rutile that is anomalous in W, consistent with other 

mesothermal Au deposits. 

 

The Troilus Au-Cu deposit in Québec is hosted by 

lower amphibolite grade metamorphic rocks, and is 

variably classified as either porphyry or mesothermal 

mineralization.  Rutile occurs throughout the deposit in 

mineralized and altered sulfide-rich zones.  In ore grade 

rocks, rutile contains strongly elevated concentrations 

of W, and weaker concentrations of Sb.  However, 

rutile in altered but only weakly mineralized rocks 

contains moderately to strongly elevated concentrations 

of Sb, as well as fairly consistently elevated W.  The 

combination of W and Sb at Troilus allows 

discrimination of both ore and subore grade rutile, 

except for a few grains that are near the detection limit 

for both W and Sb.  In the latter case, such rutile is 

hosted by brecciated and sheared rocks, and is 

characterized by lower Fe concentrations than the 

anomalous grains.  In the ore zones, 96 % of rutile 

grains contain detectable W, and in subore rocks, 69 % 

of grains contain W above the detection limit (80 % of 

all grains from mineralized or altered rocks in the 

deposit).  Similarly, 41 % of all rutile grains from ore 

and subore rocks in the deposit contain detectable Sb.  

The presence of Sb and W in rutile supports a 

mesothermal origin for mineralization (at least for 

gold), as Sb is not known to occur in rutile hosted by 

Au-porphyry systems. 

 

Metamorphic rocks in the area of the Montauban Au-

Cu deposit (Québec) attained upper amphibolite to 

granulite facies grades.  Rutile in the ore zones has 

moderately elevated concentrations of W, and 

particularly high Au grades are associated with 

enhanced W concentrations.  Seventy-three percent of 

rutile grains in ore grade samples contain detectable W. 

 Montauban is thought to be a VMS-type deposit that 

was either gold-rich or had a gold event superimposed 

upon it.  The W-rich rutile compositions support a 

mesothermal origin for at least the gold mineralization, 

and the lack of Sn is problematic for a VMS origin for 

the base metal sulfides. 

 

Compositional data for rutile associated with 

mesothermal gold deposits is summarized in Figure 5,  

Hemlo
Mesothermal Au
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Exploration Tools – Trace Element Fingerprints

Sn-W Mineralized

(Gracio, 2020) 
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Exploration Tools – Trace Element Abundance Maps

(Gracio, 2020) 
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Exploration Tools – Trace Element Abundance Maps

(Gracio, 2020) 
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Exploration Tools – Trace Element Abundance Maps

(Gracio, 2020) 
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Take Home Messages

❖ Alluvial heavy mineral associations are a good proxy for local geology and mineralized 
areas.

❖ Alluvial heavy mineral abundance maps can pinpoint orebodies & unravel 
metamorphic and metasomatic processes related to the installation of productive 
intrusives.

❖ Alluvial rutile & anatase trace element geochemistry are an excellent exploration tool 
for Sn and W deposits:

▪ Sn-rich and W-rich primary magmatic rutile can be used as a proxy for specialized and 
productive Sn & W granites;

▪ Primary hydrothermal rutile & anatase, precipitated from mineralizing fluids, can be either 
enriched or depleted in HFSE depending on their relative position in the paragenetic 
sequence in respect to cassiterite (Sn), wolframite (W) and scheelite (W), or other HFSE 

forming minerals. 



To be continued… Part III in about 5-10 min! Stay tunned! There will be coffee afterwads!



Tourmaline (Ia) selvages of quartz lodes
                               intergrown with Ms(Ia)
      preciding Wfm(I) and Cass(I)
                               metasomatic halos 

Panasqueira  tourmaline

(Mateus et al. 2020)



(Mateus et al. 2020)

Tourmaline II – in selvages and reopening of Qz veins with Cst II and Ap II (OSS2) 

Tourmaline Ib – Intergrown with MS(II)
                              Thin selvages with Tpz

Tourmaline Ic – veinlet structures

Panasqueira  tourmaline
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