

http://doi.org/10.54499/ERA-MIN/0002/2019 https://mostmeg.rd.ciencias.ulisboa.pt/

GEOCIÊNCIAS

Indications provided by compositional variations recorded in TiO₂ polymorphs and tourmaline

L. Miguel Gaspar; Nuno Grácio; Rute Salgueiro; Mafalda Costa; Isabel Ribeiro da Costa; António Mateus; Ivo Martins; Pedro Reis

Indications provided by compositional variations recorded in TiO_2 polymorphs and tourmaline

Part II

MDPI

Article

Trace Element Geochemistry of Alluvial TiO₂ Polymorphs as a Proxy for Sn and W Deposits

Miguel Gaspar ^{1,2,*}, Nuno Grácio ^{2,3}, Rute Salgueiro ³ and Mafalda Costa ⁴

Rutile

Anatase

Brookite

Metallogenic belts

Sn-W deposits

W quartz veins W(Sn) quartz veins W skarns Sn(W) quartz veins Sn aplite-pegmatites Sn greisen Sn alluvial

(Martins 2012, after Carvalho 1974)

Góis-Panasqueira-Segura Sn-W belt (Central Portugal)

MOSTMEG

Góis – Vale Pião deposit

Mineral ocurrences

(Sn-W)

- 1 Vale Moreiro Casal Loureiro
- 2 Senhora da Guia
- 3 Rabadão
- 4 Vale Pião
- 5 Barroca de Amiães

(Au-Ag)

- 6 Vieiro
- 7 Cadafaz
- 8 Corterredor
- 9 Cerdeira
- 10 Mestras
- 11 Cabeçadas
- 12 Escádia Grande
- 13 Roda Cimeira
- 14 Roda Fundeira
- 15 Fonte Limpa
- 16 Alvares

(Sb-Au) 17 – Vale Torto

(Manuel et al. 2017)

Góis – Vale Pião deposit

(I. Fernandes 2020)

Góis – Vale Pião Tourmaline

Góis – Vale Pião Tourmaline

Góis-Panasqueira-Segura Sn-W belt (Central Portugal)

MOSTMEG

Panasqueira W-Sn-(Cu) deposit

Simplified paragenitic sequence of Panasqueira deposit

(Mateus et al. 2020)

Mg/(Mg+Fe_T) apfu

Góis-Panasqueira-Segura Sn-W belt (Central Portugal)

MOSTMEG

Penamacor-Monsanto-Medelim

MOSTMEG

(MOSTMEG 2022)

Granite

Qz vein/breccia

Tourmalinite

Tourmaline from magmatic rocks

Tourmaline from metasediments, toumalinite & breccias

Góis-Panasqueira-Segura Sn-W belt (Central Portugal)

Segura-Zebreira-Salvaterra do Extremo

New data (MOSTMEG)

(MOSTMEG 2023)

Segura

Sub-horizontal Sn-W quartz vein system similar to Panasqueira

Segura-Zebreira-Salvaterra do Extremo

Góis-Panasqueira-Segura Sn-W belt (Central Portugal)

Mata da Rainha

MOSTMEG

Summarizing

Summarizing

Summarizing

Mg/(Mg+Fe_T) apfu

What about minor and trace elements?

What about minor and trace elements?

What about minor and trace elements?

Part II – TiO₂ polymorphs

Article

Trace Element Geochemistry of Alluvial TiO₂ Polymorphs as a **Proxy for Sn and W Deposits**

Miguel Gaspar ^{1,2,*}, Nuno Grácio ^{2,3}, Rute Salgueiro ³ and Mafalda Costa ⁴

Brookite

n=1125

С

2 Km

Alluvial heavy mineral relative abundance maps

Alluvial heavy mineral relative abundance maps

Trace elements in TiO₂ minerals – EMP data

Trace element geochemistry of rutile and anatase EMP data

	V	Cr	Fe	Sn	Nb	Ta	W	Zr
Rútilo (ppm)								
Mínimo	< 205	< 196	< 194	< 350	< 312	< 1199	< 1212	< 279
Máximo	10937	4201	29258	55665	85347	19139	57173	1577
Média	1712	168	5882	4462	5723	890	5126	68
Mediana	1271	0	4508	882	3845	0	1491	0
Desvio Padrão	1388	370	5196	7900	6269	1990	8898	163
Anátase (ppm)								
Mínimo	< 198	< 196	< 188	< 354	< 302	< 1143	< 1103	< 270
Máximo	5289	1006	17699	4892	12296	16895	10523	992
Média	754	23	472	85	1575	261	694	99
Mediana	877	0	894	0	1139	0	0	0
Desvio Padrão	545	88	280	387	1510	833	1566	193

(Grácio, 2020)

Mineralized Zones

0.69

0.72

0.77

Effective Ionic Radii (Å)

in VI coordination

0.58

0.59

0.60

0.64

0.62

0.65

0.66

0.82

TiO₂ Polymorph Stability Primary vs. Secondary

Alteration of Ti-rich phases

Ilmenite

 $FeTiO_3 + S_2 = FeS_2 + TiO_2$

Ti-magnetite

$$2(Fe, Ti)_{3}O_{4} + S_{2} = Fe_{3}O_{4} + FeS_{2} + TiO_{2}$$

Biotite

$$\begin{split} &K(Fe, Mg, Ti)_{3}(Si_{3}Al)O_{10}(OH)_{2} + S_{2} \\ &= K(Mg, Fe)_{3}(Si_{3}Al)O_{10}(OH)_{2} + FeS_{2} \\ &+ TiO_{2} \end{split}$$

Titanite

 $CaTiSiO_5 + CO_2 = TiO_2 + CaCO_3 + SiO_2$

After Meinhold (2010)

Elements Rutile Crystal Forms Controlling Trace Elemer

Exploration Tools – Trace Element Vectoring/Fingerprints

Exploration Tools – Trace Element Fingerprints

Exploration Tools – Trace Element Fingerprints

Exploration Tools – Trace Element Abundance Maps

(Gracio, 2020)

Exploration Tools – Trace Element Abundance Maps

(Gracio, 2020)

Exploration Tools – Trace Element Abundance Maps

(Gracio, 2020)

- Alluvial heavy mineral associations are a good proxy for local geology and mineralized areas.
- Alluvial heavy mineral abundance maps can pinpoint orebodies & unravel metamorphic and metasomatic processes related to the installation of productive intrusives.
- Alluvial rutile & anatase trace element geochemistry are an excellent exploration tool for Sn and W deposits:
 - Sn-rich and W-rich primary magmatic rutile can be used as a proxy for specialized and productive Sn & W granites;
 - Primary hydrothermal rutile & anatase, precipitated from mineralizing fluids, can be either enriched or depleted in HFSE depending on their relative position in the paragenetic sequence in respect to cassiterite (Sn), wolframite (W) and scheelite (W), or other HFSE forming minerals.

To be continued... Part III in about 5-10 min! Stay tunned! There will be coffee afterwads!

Tourmaline Ib – Intergrown with MS(II) Thin selvages with Tpz

Tourmaline Ic – veinlet structures

Tourmaline II – in selvages and reopening of Qz veins with Cst II and Ap II (OSS2)