

http://doi.org/10.54499/ERA-MIN/0002/2019 http://doi.org/10.54499/ERA-MIN/0003/2019 http://doi.org/10.54499/ERA-MIN/0005/2019 https://mostmeg.rd.ciencias.ulisboa.pt/

Fundação para a Ciência e a Tecnologi

Trace element analysis of cassiterite and its effectiveness in the recognition of different provenances

Miguel Gaspar; P. Moita; A. Cravinho; M. Costa; P. Barrulas; M. Beltrane; J. Mirão; P. Reis; I. Martins; A. Mateus; N. Gracio; R. Salgueiro; A. Guedes

Trace element analysis of cassiterite and its effectiveness in the recognition of different provenances

Introduction

Cassiterite (SnO₂) chemistry (common minor & trace elements) Substitution mecanisms Factors controlling incorporation of trace elements in Cassiterite

Cassiterite data from Góis-Panasqueira-Segura Sn-W belt

Cathodoluminescence Cassiterite EMPA data (minor/trace elements fingerprints)

Aplication to alluvial cassiterite (Segura)

Cassiterite EMPA data (minor/trace elements fingerprints) Cassiterite LA-ICPMS data (preliminary results on minor/trace elements fingerprints)

Wrap-up

Cassiterite (SnO₂) structure – Substitution mecanisms

Common minor/trace elements

What controls minor/trace elements content?

Crystal chemistry

M⁶⁺ - W

M⁵⁺ - Nb, Ta, As

M⁴⁺ - Ti, Hf, Zr, W, Nb, Ta, V, Mn

M³⁺ - Fe, Mn, V, Cr, Sc, Ga, Al

M²⁺ - Fe, Mn, Zn

 MO_2 – rutile (TiO₂) structure

Thermodynamics

Nearest neighbour interactions Polyhedral distortion Enthalpy of mixing

Cassiterite - Substitution mecanisms

Factors Controlling Incorporation of Trace Elements in Cassiterite

Crystal growth/kinetics

Qz vein (Panasqueira)

Photo: Ivo Martins

Qz vein (Panasqueira)

Photo: Ivo Martins

Photo: Frederico Martins

External factors

P, T, μ (chemical potentials-element availability; dependent on competing mineral species), diffusion rates. *Compositions can also change due to alteration!*

Cathodoluminescence (CL) Imaging

Cathodoluminescence (CL) Imaging

Góis-Panasqueira-Segura Sn-W belt (Central Portugal)

Cassiterite Mounts

Góis-Panasqueira-Segura Sn-W belt (Central Portugal)

GÓIS

Senhora da Guia (Sandinha)

Qz veins (Cst + W)

Vale Pião (F. Martins, 2017; I. Fernandes, 2020)

- Qz veins (Cst + W)
- Aplite (Cst + W + Li-mica + Au)
- Calcsilicate veins (Cst + garnet-Gr₃₃Sps₃₀Alm₂₇)
- Disseminated in metasomatized SCG (silicification/sulfides - W)

GÓIS

Senhora da Guia (Sandinha)

Qz veins (Cst + W)

Vale Pião (F. Martins, 2017; I. Fernandes, 2020)

- Qz veins (Cst + W)
- Aplite (Cst + W + Li-mica + Au)
- Some people will call this "Skarns"
- Disseminated in metasomatized SCG (silicification/sulfides - W)

📕 W6+ 📕 Ta5+ 📕 Nb5+ 📕 Hf4+ 📕 Zr4+ 📃 Mn4+ 📕 Ti4+ 🔲 Ga3+ 📕 Fe3+ 📃 Mn3+ 📕 Cr3+ 📕 V3+ 📃 Al3+ 📕 Fe2+ 🗌 Mn2+

/OSTMEG

📕 W6+ 📕 Ta5+ 📕 Nb5+ 📕 Hf4+ 📕 Zr4+ 📃 Mn4+ 📕 Ti4+ 🔲 Ga3+ 📕 Fe3+ 📃 Mn3+ 📕 Cr3+ 📕 V3+ 📃 Al3+ 🔲 Fe2+ 🗌 Mn2+

Góis-Panasqueira-Segura Sn-W belt (Central Portugal)

Simplified paragenitic sequence of Panasqueira deposit

📕 W6+ 📕 Ta5+ 📕 Nb5+ 📕 Hf4+ 📕 Zr4+ 📃 Mn4+ 📕 Ti4+ 🔲 Ga3+ 📕 Fe3+ 📃 Mn3+ 📕 Cr3+ 📕 V3+ 📃 Al3+ 📕 Fe2+ 🗌 Mn2+

NOSTMEG

📕 W6+ 📕 Ta5+ 📕 Nb5+ 📕 Hf4+ 📕 Zr4+ 📃 Mn4+ 📕 Ti4+ 🔲 Ga3+ 📕 Fe3+ 📃 Mn3+ 📕 Cr3+ 📕 V3+ 📃 Al3+ 🔲 Fe2+ 🗌 Mn2+

📕 W6+ 📕 Ta5+ 📕 Nb5+ 📕 Hf4+ 📕 Zr4+ 📃 Mn4+ 📕 Ti4+ 🔲 Ga3+ 📕 Fe3+ 📃 Mn3+ 📕 Cr3+ 📕 V3+ 📃 Al3+ 🔲 Fe2+ 🗌 Mn2+

Panasqueira

Oxide stage Cassiterite

📕 W6+ 📕 Ta5+ 📕 Nb5+ 📕 Hf4+ 📕 Zr4+ 📃 Mn4+ 📕 Ti4+ 🔲 Ga3+ 📕 Fe3+ 📃 Mn3+ 📕 Cr3+ 📕 V3+ 📃 Al3+ 📕 Fe2+ 🗌 Mn2+

Góis-Panasqueira-Segura Sn-W belt (Central Portugal)

ARGEMELA

Pedra Alta Sn-Qz veins Cabeço da Argemela Granitic facies (γ) Aplitic-pegmatitic facies (γ_{ap}) Veins (type I, II, III, III*)

MOSTMEG

📕 W6+ 📕 Ta5+ 📕 Nb5+ 📕 Hf4+ 📕 Zr4+ 📃 Mn4+ 📕 Ti4+ 🔲 Ga3+ 📕 Fe3+ 📃 Mn3+ 📕 Cr3+ 📕 V3+ 📃 Al3+ 🔲 Fe2+ 📃 Mn2+

ppm

Góis-Panasqueira-Segura Sn-W belt (Central Portugal)

Góis-Panasqueira-Segura Sn-W belt (Central Portugal)

Li-Sn Aplito-pegmatites Cerro (Cabeço) Queimado Sn-bearing aplites

Sn-(W) Veins

W-(Sn) Veins

Segura – CQ (aplitic facies)

(Bennet, J.M. 2021)

Alluvial samples can have multiple sources

2.5 cm mounts

Mostmeg

Cassiterite – LA-ICPMS Analyses

Cassiterite – LA-ICPMS Analyses

Cassiterite – LA-ICPMS Analyses (trace elements)

Cassiterite – LA-ICPMS Analyses (trace elements)

MOSTMEG

Wrap Up

- Cassiterite minor and trace element are excellent fingerprints and can discriminate among disctint cassiterite Mineral systems.
- ✤ A multi-approach is needed to fully understand the physicochemical history of cassiterite: petrography, Imaging (CL and X-ray mapping))/EPM/LA-ICPMS.
- Alluvial cassiterite can be a good exploration starting approach

