

http://doi.org/10.54499/ERA-MIN/0002/2019 https://mostmeg.rd.ciencias.ulisboa.pt/

Advantages of using the mineralsystems approach in planning exploration surveys

António Mateus; Ivo Martins; Ícaro Dias da Silva; L. Miguel Gaspar; Isabel Ribeiro da Costa

Mineral Systems Approach

General view of the Panasqueira mine

Mineral Systems Approach

- Considers the foundation of ore-forming systems in the framework of lithosphericscale processes from a timeprivileged viewpoint of metal, ligand and fluid sources, followed by transport and deposition in traps.
- Improves the predictability of geological models when used in exploration surveys.

After Knox-Robinson and Wyborn (1997) and (Huston et al., 2016)

Range of spatial scales involved and mapping criteria

Conceptual model in a time-space context

Granite-related ore-systems in the G-P-A-S strip Aplite & pegmatite rocks Greisens, breccias & quartz-lodes generated in magmatic-hydrothermal transitional conditions

Erges river at Segura

Major links addressed (in red what could be observed and characterised)

How to do it? (following an inverse approach/modelling)

Step 1: Main compositional attributes of the sampled granitoid suites; possible protoliths, estimation of melting temperatures and discussion of heat sources considering the prevalent geodynamic constraints.

Step 2: Main compositional trends to (highly) differentiated γ suites; geochemical affinities, the role of prevailing fluxing agents (F, B, P) and relevance of external fluid inputs.

Step 3: Emplacement timing, cooling rates & "mineralization ages"

Age (Ma)

290

370

290

Continent-continent collision (*ca*. 365 Ma)

Subalkaline ferro-potassic (HT) granites (ca. 295-290 Ma). BDT \approx 4-5 km

and

Based on petrographic and geochemical features, 5 main granite suites were emplaced during the ca. 320-295 Ma period (Villaseca, 2011; Roda-Robles et al., 2018)

> Highly peraluminous, Ca-poor, P-rich (biotite ± muscovite ± cordierite ± andalusite) monzogranites; prevailing metasedimentary source; emplaced at ca. 310-300 Ma.

P-poor, moderately peraluminous granites, mostly crystallized at 308–299 Ma, coupled with **moderately to low peraluminous granites, with features at the limit between S- and I-type granites**

I-type granites including metaluminous to low peraluminous amphibole-bearing biotite-granodiorites.

Mineral systems analysis applied to the G-P-A-S strip (a preliminary attempt)

General view of the Idanha-a-Velha and its environs

SOURCES

Fertile magmas formation (energy, protoliths nature, fluxing components)

Extreme fractionation of pluton-sized batches of granite magma

ACTIVE PATHWAYS

Magma transport (directing flow through the crust and late separation of evolved residual melts or critical fluids) TRAPS

Cooling and rapid crystallisation (chemical transport & differentiation; metal enrichment in residual portions)

MODIFICATIONS

Exhumation vs preservation

CRITICAL FACTORS

Supergene assemblages

> Secondary (alluvial) accumulations

Crustal-melting (variable degrees of partial melting that could involve the same protolith; mixing of melts generated in different crustal levels and P-T conditions)

Collisional features

Late events able to produce decompression melts

Crustal-scale shearing/faulting (cycles of renewed rock permeability increasing) Fractional crystallization, filter pressing or rapid diffusion of critical phases

High contents of fluxing agents (P, F, B)

Highly differentiated (and metal-fertile) batches

Supercritical fluids split-up.

Mixing with external fluid components

CONSTITUENT PROCESSES

For granites:

- Mineral attributes
- Textural features
- Geochemical attributes
- Age

Fertility footprints:

- Mineral abundance and composition
- Geochemical ratios and indexes

Structural patterns:

- Density
- Connection
- Mineral infillings
- Age

Alteration pathways in country rocks:

- Mineral guides
- Geochemical guides
- Age

Mineral/Geochemical attributes

Alteration haloes:

- Mineral guides
- Geochemical guides

Heavy minerals in alluvial sediments:

- Classification
- Composition

Soil or stream sediment geochemistry

M.A. Gonçalves, A. Mateus, F. Pinto, R. Vieira (2018) Using multifractal modelling, singularity mapping, and geochemical indexes for targeting buried mineralization: Application to the W-Sn Panasqueira ore-system, Portugal. *J. Geoch. Expl.* 189, 42-53. https://doi.org/10.1016/j.gexplo.2017.07.008.

https://mostmeg.rd.ciencias.ulisboa.pt/

Thank you for your attention!

Modified metasediment adjoining the "greisen-like" facies (Mata da Rainha)

the states