Atlas of macroscopic textures and μ-XRF compositional images of rock samples

Granites and their host rocks

MOSTMEG

Ivo Martins, Michel Cathelineau, Marie-Christine Boiron, António Mateus, Ícaro Dias da Silva

2024

http://doi.org/10.54499/ERA-MIN/0002/2019

Contents

Micro- X-Ray Microfluorescence (mXRF)	3
• Cambrian-Ordovician event; the example of the Zebreira	oluton 4
Late Variscan event	8
• Orca	9
Salvaterra do Extremo	12
Panasqueira	13
Castelo Branco	15
Segura	16
Argemela	22
Penamacor-Monsanto	30
Idanha dykes	37
Metasedimentary rocks	39
Rosmaninhal Formation	
Malplica do Tejo Formation	39
Spotted schists	

Micro- X-Ray Microfluorescence (μXRF)

Micro- X-Ray Microfluorescence (XRF) mapping was carried out using a Bruker-Nano M4 Tornado instrument (SCMEM, GeoRessources laboratory, Nancy, France). This system has a Rh X-ray tube with a Be side window and polycapillary optics, giving an X-ray beam with a 25-30 μm diameter on the sample. The X-ray tube was operated at 50 kV and 200 μA. A 30 mm2 xflash® SDD detects X-rays with an energy resolution of <135 eV at 250,000 cps. All analyses were carried out at a 2 kPa vacuum. Main elements such as Ca, Mg, Mn, Fe, P, Al, K, Na and Si were mapped, and composite chemical images were generated. The micro-XRF mapping helps choosing the most representative assemblages for SEM and electron microprobe investigations.

Colour range of elemental map intensities

High element content

Low element content

Micro-XRF at GeoRessources- Nancy

Cambrian-Ordovician event

The example of the Zebreira pluton

Zebreira biotite granite (and aplite)

Granites – Cambrian-Ordovician event

Granites -Cambrian-Ordovician event

of Zebreira Pluton)

Late Variscan event

Orca
Salvaterra do Extremo
Panasqueira
Castelo Branco
Segura
Argemela
Penamacor

Orca Mata da Rainha

G-SEIXO#1 (Orca Pluton)

P (wt%)	F (ppm)	Be (ppm)	Li (ppm)	B (ppm)	Cs (ppm)	Ba (ppm)	Nb (ppm)	Ta (ppm)	Sn (ppm)	W (ppm)	Rb/Sr
0.33	700	3	193	39	19.50	170	15.30	2.07	14	-	8.57

Granites - Variscan event

G-SEIXO#2 (Orca Pluton)

P	F	Be	Li	B	Cs	Ba	Nb	Ta	Sn	W	Rb/Sr
(wt%)	(ppm)										
0.39	1541	-	-	-	36.60	7.60	21.20	3.40	29.90	4.40	37.49

G-STEX#2B (Salvaterra do Extremo Facies)

P (wt%)	F (ppm)	Be (ppm)	Li (ppm)	B (ppm)	Cs (ppm)	Ba (ppm)	Nb (ppm)	Ta (ppm)	Sn (ppm)	W (ppm)	Rb/Sr
0.72	600	2	-	138	43.90	11	16.40	5.30	31	2	9.80

SCB2#11 (Two-mica Panasqueira Granite)

P (wt%)	F (ppm)	Be (ppm)	Li (ppm)	B (ppm)	Cs (ppm)	Ba (ppm)	Nb (ppm)	Ta (ppm)	Sn (ppm)	W (ppm)	Rb/Sr
0.45	2500	3	423	16	19.30	81	11.30	2.77	18	11	21.58

SCB2#15 (Muscovite Panasqueira Granite)

P	F	Be	Li	B	Cs	Ba	Nb	Ta	Sn	W	Rb/Sr
(wt%)	(ppm)										
1.41	2300	3	229	29	20.10	14	29.30	11.80	38	15	4.13

Castelo Branco- G1 granite

Segura main facies

G_SEG#4 (Cordierite-bearing Two-mica Facies)

P (wt%)	F (ppm)	Be (ppm)	Li (ppm)	B (ppm)	Cs (ppm)	Ba (ppm)	Nb (ppm)	Ta (ppm)	Sn (ppm)	W (ppm)	Rb/Sr
0.34	300	9	131	38	12.30	225	9.30	1.14	8	-	4.86

G_SEG#1 (Muscovite Facies)

P (wt%)	F (ppm)	Be (ppm)	Li (ppm)	B (ppm)	Cs (ppm)	Ba (ppm)	Nb (ppm)	Ta (ppm)	Sn (ppm)	W (ppm)	Rb/Sr
0.67	1400	3	206	109	32.20	45	32.70	10.50	48	9	5.15

G_SEG#2 (Two-mica Facies - Bt >> Ms) - Mica zoning and inclusions

Segura dykes- Cerro queimado

Gf_SEG#3A (Aplite-pegmatite Dyke) - Phosphate details in pegmatite part

Gf_SEG#3B (Aplite-pegmatite Contact)

P (wt%)	F (ppm)	Be (ppm)	Li (ppm)	B (ppm)	Cs (ppm)	Ba (ppm)	Nb (ppm)	Ta (ppm)	Sn (ppm)	W (ppm)	Rb/Sr
2.43	2900	7	1160	35	52.30	14	82	59.70	256	1	6.36

Gf SEG#3C (Aplite-pegmatite Dyke) - Aplite portion

P (wt%)	F (ppm)	Be (ppm)	Li (ppm)	B (ppm)	Cs (ppm)	Ba (ppm)	Nb (ppm)	Ta (ppm)	Sn (ppm)	W (ppm)	Rb/Sr
2.43	2900	7	1160	35	52.30	14	82	59.70	256	1	6.36

Granites – Variscan event

G_ARG#1 (Argemela RMG)

Micas

inner : Fe rich, outer, Rb rich

P (wt%)	F (ppm)	Be (ppm)	Li (ppm)	B (ppm)	Cs (ppm)	Ba (ppm)	Nb (ppm)	Ta (ppm)	Sn (ppm)	(ppm)	Rb/Sr
0.67	2500	114	1110	56	115	26	60.10	65.70	588	-	5.77

ARGEMELA

G_ARG#2 (Argemela RMG)

G_ARG#2 (Argemela RMG) - Mica zoning

P (wt%)	F (ppm)	Be (ppm)	Li (ppm)	B (ppm)	Cs (ppm)	Ba (ppm)	Nb (ppm)	Ta (ppm)	Sn (ppm)	W (ppm)	Rb/Sr
2.05	2300	108	2240	40	45.60	7	55.70	51.20	687	4	38.28

Granites – Variscan event

G_ARG#2 (Argemela RMG)

P (wt%)	(ppm)	Be (ppm)	Li (ppm)	B (ppm)	Cs (ppm)	Ba (ppm)	Nb (ppm)	Ta (ppm)	Sn (ppm)	W (ppm)	Rb/Sr
2.05	2300	108	2240	40	45.60	7	55.70	51.20	687	4	38.28

G_ARG#2 (Argemela RMG)

P	F	Be	Li	B	Cs	Ba	Nb	Ta	Sn	W	Rb/Sr
(wt%)	(ppm)										
2.05	2300	108	2240	40	45.60	7	55.70	51.20	687	4	38.28

Gf_ARG#1 (Argemela Aplite-Pegmatite Dyke)

P	F	Be	Li	B	Cs	Ba	Nb	Ta	Sn	W	Rb/Sr
(wt%)	(ppm)										
1.51	1600	44	900	85	77.20	22	86.60	114	803	1	23.49

Gf_ARG#1 (Argemela Aplite-Pegmatite Dyke)

P (wt%)	F (ppm)	Be (ppm)	Li (ppm)	B (ppm)	Cs (ppm)	Ba (ppm)	Nb (ppm)	Ta (ppm)	Sn (ppm)	W (ppm)	Rb/Sr
1.51	1600	44	900	85	77.20	22	86.60	114	803	1	23.49

Granites - Variscan event

Gf_ARG#1 (Argemela Aplite-Pegmatite Dyke)

P (wt%)	F (ppm)	Be (ppm)	Li (ppm)	B (ppm)	Cs (ppm)	Ba (ppm)	Nb (ppm)	Ta (ppm)	Sn (ppm)	W (ppm)	Rb/Sr
1.51	1600	44	900	85	77.20	22	86.60	114	803	1	23.49

PENAMACOR-MONSANTO

Penamacor-Monsanto

Medelim

G_MED#1 (Muscovite+Turmaline Facies)

P (wt%)	F (ppm)	Be (ppm)	Li (ppm)	B (ppm)	Cs (ppm)	Ba (ppm)	Nb (ppm)	Ta (ppm)	Sn (ppm)	W (ppm)	Rb/Sr
0.60	1400	14	661	752	192	46	27.30	8.83	391	7	18.93

PENAMACOR. Monsanto

MONT-P2 pegmatite

MONT-TU1 : tourmaline MONT-TU2 : granite

Montsanto MONT –V1

Monsanto

Gf_MONS#1A (Monsanto Pegmatite Dyke)

P (wt%)	F (ppm)	Be (ppm)	Li (ppm)	B (ppm)	Cs (ppm)	Ba (ppm)	Nb (ppm)	Ta (ppm)	Sn (ppm)	W (ppm)	Rb/Sr
0.45	1700	3	458	884	42.40	85	13.70	6.68	60	8	22.72

Gf_MONS#1A (Monsanto Pegmatite Dyke)

G_MARCELINA#1 (Porphyry Intrusion in Zebreira Area)

P	F	Be	Li	B	Cs	Ba	Nb	Ta	Sn	W	Rb/Sr
(wt%)	(ppm)										
0.27	300	11	64.90	66	15.10	550	9.70	1.88	11	-	2.01

IDANHA dykes

Gf_IDN#4 (Differentiated Microgranite Dyke in Oledo-Idanha-a-Nova Area)

Metasedimentary Rocks

R#13 (Rosmaninhal Upper Member)

P#15 (Rosmaninhal Lower Member)

P#5 (Malpica do Tejo Upper Member)

Metasedimentary Rocks

P#4 (Malpica do Tejo Lower Member)

<u>Metasedimentary Rocks – Spotted Schists</u>

MT#10 (Malpica do Tejo Upper Member)

ZEB-CONT#1 (Malpica do Tejo Upper Member)

<u>Metasedimentary Rocks – Spotted Schists</u>

ZEB-CONT#1 (Malpica do Tejo Upper Member)

ARG#1 (Malpica do Tejo Upper Member)

ARG#1

