LNEG contribution to the Alentejo Region Integrated Mineral Exploration Data Management

João Xavier Matos, PhD

Laboratório Nacional de Energia e Geologia, I.P.

joao.matos@lneg.pt

MOSTMEG Project FINAL DISSEMINATION SEMINAR, Évora University, Hercules Laboratory, 06/06/2024

LNEG geological surveys in the Alentejo

1 - Geological mapping

- Goals and mapping scale 1/50,000, 1/200,000
- Regional scale maps 1/200,000, 1/400,000
- Databases and background GeoPortal
- Detail stratigraphy and tectonic setting
- Field work, logistics and land assessment
- Rock dating
- 2 Mineral exploration surveys
 - Green field areas
 - Brown field areas
 - Geophysical and geochemical surveys
 - Mineralization studies
- 3 Predictive mineral exploration mapping
 - New challenges related with the new CRM Act

Geology

1 - Geological mapping

- Goals and mapping scale 1/50,000, 1/200,000
- Regional scale maps 1/200,000, 1/400,000
- Databases and background GeoPortal
- Detail stratigraphy and tectonic setting
- Field work, logistics and land assessment
- Rock dating
- 2 Mineral exploration surveys
 - Green field areas
 - Brown field areas
 - Geophysical and geochemical surveys
 - Mineralization studies
- 3 Predictive mineral exploration mapping
 - New challenges related with the new CRM Act

Geology

1 - Geological mapping

- Goals and mapping scale 1/50,000, 1/200,000
- Regional scale maps 1/200,000, 1/400,000
- Databases and background GeoPortal
- Detail stratigraphy and tectonic setting
- Field work, logistics and land assessment
- Rock dating

GeoPortal LNEG

Schermerhorn et al. 1987 Oliveira et al. 2010

Geology

1 - Geological mapping

- Goals and mapping scale 1/50,000, 1/200,000
- Regional scale maps 1/200,000, 1/400,000
- Databases and background GeoPortal
- Detail stratigraphy and tectonic setting
- Field work, logistics and land assessment
- Rock dating

South Portuguese Zone

Oliveira et al., 2019

M ESO-CENOZOIC

MAPA GEOLÓGICO DE LA ZONA SURPORTUGUESA . CARTA GEOLÓGICA DA ZONA SUL PORTUGUESA

MAPA GEOLÓGICO DE LA ZONA TRANSFRONTERIZA DE ESPAÑA Y PORTUGAL. ZONA SURPORTUGUESA CARTA GEOLÓGICA DA ÁREA TRANSFRONTEIRIÇA DE ESPANHA E PORTUGAL. ZONA SUL PORTUGUESA

HOJA-1 / FOLHA-T

TOTAL AND INCOME.		Alexandra de
and the local division in		-
	summer and	and the state of
William .		
Transferrer and state		
(data - 100	100	-

1 === =] =

Realizabili property day

Dorothi Ki Barrent

-	And the second s
- 11	(moral forest)
-	controls none.
	man and shares
	The same grant

Diez-Montes et al., 2020

15/-

South Portuguese Zone

Gafo Formation (Late Devonian), Corte Gafo

South Portuguese Zone - paleontology

Nereite, Barranco do Homem Formation (PQG), Corte Pequena

Skolitos, V.G. Guizo, Phyllite-Quartzite Formation (PQG), São Domingos

Palynological studies on Carboniferous and Devonian sedimentary and volcano-sedimentary sequences (microfossils), *e.g.* Pereira et al., 2008, 2010, 2012, 2014, 2018, 2021; Mendes et al., 2020, 2021

Posidonia becheri, Mértola Formation, Baixo Alentejo Flysch Group (BAFG)

Goniatite, Mértola Formation (BAFG), Ribeira de Bens

Calamites, IC27 km5, Mértola Formation (BAFG)

South Portuguese Zone

Guadiana river valley SW-NE section (Serra Branca-Canais): VSC (Tournaisian-Late Visean), Freixial Fm. (Late Visean), PQ Formation (Late Famennian)

South Portuguese Zone

Chança rhyolite (Tournaisian)

Volcanogenic sediments, Achada da Mina Member, Pomarão (VSC 342.4 Ma)

Algares VMS deposit (Aljustrel)

Volcanoclastic breccia (VSC), Serra Branca

•

Iberian Pyrite Belt

NW

Ad. Oliveira et al., 2013

LUED

SE

Neves-Corvo mine region - high resolution stratigraphy

clociedé Bilindira de Neves-Corve, S.A.

anoster or handlin mining

Neves-Corvo Lombador primary layering in zinc rich massive ore

Iberian Pyrite Belt

Formation	Member	Age	References	
	Volcano-Sedimentary	Complex (Famennian – Late Vise	an)	
Brancanes	Brancanes	Middle late Visean		
Godinho	Godinho	Middle late Visean	Oliveira et al., 2004, 2013b; Pereira et al., 2008	
Borra de Vinho	Borra de Vinho	Middle late Visean		
	Achada da Mina	Early Visean?		
Touril	Corte Machado	Early Visean?	Boogaard, 1969; Oliveira et al., 1992;	
Tourn	Varjotas	Tournaisian?-Early Visean?	Oliveira & Silva, 2007	
	Xistos Negros	Early Tournaisian?		
Grandaços	Grandaços	Middle late Visean?	Oliveira et al., 2004, 2013; Pereira et al., 2008	
Paraiso	Paraiso	Late Tournaisian-Early Visean	Schermerhorn et al., 1987; Leitão, 1998; Matos et al., 2010	
Graça	Graça	Early-Late Visean	Oliveira et al., 2004, 2013b; Pereira et al., 2008	
Gavião	Gavião	Middle-Late Tournaisian	Schermerhorn et al., 1987; Matos et al., 2010; Relvas et al., 2011	
Ribeira de Cobres	Ribeira de Cobres	Early-Late Visean	Oliveira et al., 2013b	
Xistos São Luís	Xistos S. Luís	Famennian-Strunian	Pereira et al., 2008	
Lousal-Caveira	Lousal-Caveira	Strunian	Matos et al., 2014	
Cerqueirinha	Cerqueirinha	Strunian?	Boogaard, 1969; Oliveira et al., 1992; Oliveira & Silva, 2007	
Neves	Neves	Strunian	Oliveira et al., 2004, 2013b; Pereira et al.,	
Corvo	Corvo	Famennian	2008, 2021	
	Phyllite-Quartzite	Group (Early Givetian-Strunian)		
	Filito-Quartzítica	Early Givetian-Strunian	Pereira et al., 2008, 2021	
Filito-Quartzítica	Nascedios	Middle Famennian-Strunian	Boogaard, 1969; Oliveira et al., 1992; Oliveira & Silva, 2007	
	Eira do Garcia	Famennian		
	Barrancão	Late Famennian	Oliveira et al., 2013a, 2013b	
	Corona Superior	Famennian-Strunian	Pereira et al., 2008, 2012; Matos et al. 2014	
	Corona Inferior	?-Early Givetian	Pereira et al., 2008, 2012; Matos et al. 2014	
Barranco do Homem	Barranco do Homem	Famennian	Oliveira et al., 2005, 2006; Pereira et al., 2008; Faria et al., 2015	
Vale Parreira	Vale Parreira	Famennian	Mendes et al., 2020	

Tabla Croncestratigrafica Internacional ICS Table Croncestratigrafice Internacional ICS

1/400 000 Map, Diez-Montes et al., 2020

100

10

-

Matos, 2021

Iberian Pyrite Belt

PQG Sequences:	Fm./Unit/Member	Age	Referrences	
	Forno da Cal limestones	Lower Famennian	Boogaard & Schermerhorn, 1981	
	Nascedios limestones	Mid Famennian – mid Strunian	Boogaard, 1963, 1967; Oliveira et al., 1992, 2006; Oliveira & Silva, 2007; Pereira et al., 2008	
	Eira do Garcia Member Famennian		Boogaard, 1963; Oliveira & Silva, 2007	
Linner DOG	Barrancão Member	Late Famennian	Oliveira et al., 2013, 2016	
Opper PQG	Upper Corona Unit Late Famennian - Strunian		Pereira et al., 2008, 2012; Matos et al., 2014	
	Barranco do Homem Fm.	Late Famennian	Oliveira et al., 2005, 2013; Pereira et al., 2008; Faria et al., 2015	
	Vale de Parreiras Fm.	Mid-late Famennian	Mendes et al., 2020; Pereira et al., 2020	
Lower PQG	Lower Corona Unit	? - Lower Givetian		
Lower PQG – Upper PQG	Phyllite-Quartzite Fm.	? (Lower Givetian) - Strunian	Oliveira et al., 2013; Pereira et al., 2008, 2021	

The Represa Fm. (late Famennian) can be correlated with the Upper PQG Matos et al., 2023

Iberian Pyrite Belt felsic volcanic rocks (Albardeiro et al., 2023)

Nesbitt et al., 1999 (Los Frailes): Barrie et al., 2002 (Lagoa Salgada, Aljustrel, Campofrio, Las Cruces); Dunning et al., 2002 (Campofrio); Rosa et al., 2009 (Cercal, Caveira, Azinheira de Barros, Aljustrel, Ribeira de Cobres, Albernoa, Serra Branca, Chança); Valenzuela et al., 2011 (Rio Tinto); Oliveira et al., 2013 (Rosário, Ribeira de Cobres); Solá et al., 2015 (Algaré, Neves-Corvo); Mello et al., 2017 (Rio Tinto); Rosa et al. (unpub., Neves-Corvo).

Iberian Pyrite Belt felsic volcanic rocks (Albardeiro et al., 2023)

Neves-Corvo mine

a accustory or handlin mining

Massive sulphide mineralizations - ore deposit setting, folding and tectonic

Somincor/Lundin Mining, Pereira et al., 2021

LNEG

Massive sulphide mineralizations - ore deposit setting, folding and tectonic

Pereira et al., 2023 Matos et al., 2023 LNEG

Neves-Corvo mine region - high resolution stratigraphy

clociedé Bilindira de Neves-Corve, S.A.

anoster or handlin mining

Neves-Corvo Lombador primary layering in zinc rich massive ore

Neves-Corvo PQ basement study

NW

NK30B

Mendes et al., 2020

LNEG Mineral Exploration

2 - Mineral exploration surveys

- Green field areas
- Brown field areas

; l

LNEG

- Geophysical and geochemical surveys
- Ore horizon and mineralization studies

Neves-Corvo Residual Gravity Anomaly LNEG - Lundin Mining EXPLORA Project Marques et al., 2019; Matos et al., 2020

Green Field Areas

SELNEG :

Exploration at regional scale:

- Alentejo and Algarve mining occurrences 1/400 000 map (Matos & Filipe Eds, LNEG 2013, Inverno et al., 2020, www.lneg.pt)
 - 650 mineral occurrences
 - 1200 exploration drill holes

Green Field Areas

Mociços (Cu), Ossa-Morena Zone

Baixo Alentejo Flysch Group (Viséan-Bashkirian)

Iberian Pyrite Belt

Volcano-Sedimentary Complex (Upper Famennian-Upper Viséan) Phyllite-Quartzite Group (Givetian-Upper Famennian) Matos *et al*. 2008, 2020 Inverno et al., 2020

Iberian Pyrite Belt

- Since the 1960's becomes a common and continuous activity promoting geological, geophysical (seismic, gravimetric, electro-magnetic, down hole surveys) and geochemical (rock, soil, stream) surveys. Drill hole programs (locally >1500 m depth)
- Portugal: LNEG R&D projects focused in IPB regional and near mining areas; thematic databases; Aljustrel drill core shed (CEGMA - Centro de Estudos Geológicos e Mineiros do Alentejo)
- Spain: Andalusia Government 2030 Mining and Exploration Strategy. IGME databases and Peñarroya drill core shed

Almina EM survey, 2022

Aljustrel facilities, UAV photo Sara Santos (LNEG)

LNEG support to exploration programs - green field:

- 1/400,000 scale mapping: geology, gravimetry, magnetometry, radiometry and Cu soil geochemistry
- R&D surveys with mining companies ore horizon high resolution stratigraphy
- Aljustrel drill core collection (relog programs) + soil and stream sample collections (e.g. FRX analysis)
- CEGMA 2.0 2019-2023 (1,6M€)
- Aljustrel drill core shed:
 June 2024 200 km!

LNEG support to exploration programs - green field:

	Massive sulfides and stockworks
lberian Pyrite Belt	Lagoa Salgada, Caveira, Lousal, Salgadinho, Montinho, Estação e Gavião (Aljustrel),
	São Domingos, Chança
	Fe, Mn oxides
	Serra da Mina, Lagoas do Paço
	Massive sulfides + magnetite associated with metadolomites and meta volcanites
	Enfermarias, Preguiça, Portel, Balsa
Ossa- Morena	Magnetite
Zone	Orada, Vale de Pães
	Veins structures (Cu)
	Alcáçovas, Mostardeira, Miguel Vacas, Defesa das Mercês

Iberian Pyrite Belt, VMS discoveries in Portugal

Ore deposit (region)	Year	Company/Survey	Exploration methodology
Moinho (Aljustrel)	1955	Mines d' Aljustrel	Turam
Feitais (Aljustrel)	1963	Mines d' Aljustrel	Gravimetry
Estação (Aljustrel)	1968	Serviço Fomento Mineiro ¹	Gravimetry
Gavião (Aljustrel)	1970	Soc. Mineira Santiago	Gravimetry, geology
Salgadinho (Cercal)	1974	Serviço Fomento Mineiro ¹	Gravimetry
Neves (Neves-Corvo)	1977	SPE-SEREM-EDMA	Gravimetry
Lombador (Neves-Corvo)	1988	Somincor	Gravimetry, geology
Lagoa Salgada (NW)	1992	Inst. Geológico e Mineiro ¹	Gravimetry, magnetotelluric, vertical electrical sounding, geology
Rio Moinhos stockwork	1995	Inst. Geológico e Mineiro ¹	Gravimetry, magnetometry, vertical electrical sounding
Chança stockwork	1994	CONASA	Gravimetry, geology
Montinho stockwork	2001	Atlantic Copper	Gravimetry
Caveira East stockwork	2002	Atlantic Copper	Gravimetry
Lousal stockwork	2008	AGC	Gravimetry

1 - Portuguese Geological Survey (actual LNEG), Matos et al., 2020

Iberian Pyrite Belt, VMS discoveries in Portugal

Ore deposit (region)	Year	Company/Survey	Exploration methodology	
São Domingos stockwork	2010	AGC Geology, gravimetry		
Semblana (Neves-Corvo)	2010	Somincor/Lundin Mining	Electromagnetic	
Serrinha stockwork	2010	Maepa-Avrupa (LNEG ¹)	Electromagnetic (IP), soil, geochemistry, geology, gravimetry	
Monte Branco (Neves-Corvo)	2012	Lundin Mining	Gravimetry	
Sesmarias	2014	Maepa-Avrupa	Electromagnetic, gravimetry	
Lagoa Salgada (Central)	2017	Redcorp-EDM-Ascendant	Electromagnetic, gravimetry	
Lombador North (Neves-Corvo)	2022	Somincor/Lundin Mining	Electromagnetic, gravimetry, seismic	

1 - Portuguese Geological Survey (actual LNEG), Matos et al., 2020; Matos, 2024

Geophysics -

Data processing/modelling

Gravimetric map (Bouguer 2.6 gcm⁻³)

 > 300,000 gravity points (ground surveys): LNEG, Adaro, Geoconsult, Minaport, SAP, EMSC, Soc. Mineira Rio Artezia, Rio Tinto Zinc

Magnetic map (IGRF removed)

 Airborne surveys: Rio Tinto/SMRA (Geoterrex 1991): 500 m, 250 m lines/90 m alt.; Minaport/EDM/ Pirites Alentejanas (Urguhart-Dvorak 1991): 200 m lines/ 100 m alt.; IGM(LNEG) (Sanders Geophysics 1997) 500 m, 250 m lines/90 m alt.

Represas et al., 2016, Matos et al., 2020

Geophysics

Data processing/modelling

Gravimetric map (Bouguer 2.6 gcm⁻³)

Magnetic map (IGRF removed)

Represas et al., 2016, Matos et al., 2020

Radiometric map (Natural Radioactivity)

- Airborne surveys: Rio Tinto/SMRA (Geoterrex 1991): 500 m, 250 m lines/90 m alt.; Minaport/EDM/Pirites Alentejanas (Urguhart-Dvorak 1991): 200 m lines/100 m alt.
- Ground surveys: LNEG 2010

Batista et al. (2016), Matos et al. (2020)

Geophysics

Data processing/modelling

Data processing/modelling

Copper Soil Geochemistry

• LNEG and Mining Companies surveys, ~20 cm depth samples Batista, 2003, Batista & Matos, 2016, Batista et al., 2020

Geochemistry

IPB regional surveys, seismic profiles at Neves-Corvo SE area

* LNEG

Iberian Pyrite Belt regional surveys - Promine Seismic Profiles at Neves-Corvo SE area

LNEG

Neves-Corvo mine region 1/50.000 - geology and mineral occurrences

Geology _____

Mapping, logging

Almodôvar Geological Map 46C Oliveira et al. (2016)

Previous geological maps Asarco (1996), Billiton-Minaport (1993), Leca et al. (1983), SFM (1950's-1970's)

Mineral occurrences

Drill hole database

Lundin Mining massive ore mapping

Geophysical data interpretation

Matos et al., EXPLORA 2020

Neves-Corvo mine region, 1/50,000 maps

Neves-Corvo mine region 1/50,000 - gravimetry

Data processing/modelling

Serviço de Fomento Mineiro, 1960s-1990s: grid 200 m x 200 m and 50 m x 50 m, NS/EW

SAPA - NE-SW profiles, spacing 200 m

Asarco 1994-1995, spacing 200 m x 100 m

Marques et al., 2019, 2020

Neves-Corvo mine region 1/50,000 - gravimetry

Geophysics

Data processing/modelling

• **Residual Gravity map** Marques et al., 2020

Neves-Corvo mine region 1/50,000 - gravimetry

EXPL@RA	RA
---------	----

Data processing/modelling

Unidades G	eologicas	Minimo	Maximo	Media	DesvPad	n
Geological L	Inits	Minimum	Maximum	Average	StanDev	n
Fm. Mértola Mértola Fm		2.02	2.86	2.72	0.13	1858
Fm. Brancar Brancanes F	nes im.	2.57	2.99	2.76	0.06	231
Fm. Godinh Godinho Fr	0	2.39	2.83	2.71	0.05	477
Nistos Barra Borra de Vil	nde Winho nho Shales	2.4	2.85	2.75	0.06	178
Fm. Granda Grandaços i	ços Fm.	2.58	3.01	2.76	0.05	799
Fm. Graça Graça Fm.		2.72	2.8	2.77	0.03	11
Vulcinicas Feisic volcia	élsicas nic	2.57	3.11	2.74	0.06	1970
Fm. Neves Neves Fm.		2.68	2.87	2.8	0.03	63
Vulclinicas r Matic voica	náficas nic	2.61	2.93	2.8	0.05	134
	Corvo	2.4	5.6	4.53	0.28	13288
Sulfuretos	Graça	2.77	5.43	4.49	0.27	4178
maciços	Lombador	2.47	5.3	4.59	0.28	4260
sulfides	Neves	2.66	5.41	4.54	0.29	15340
authoes	Zambujal	2.5	5.39	4.64	0.25	5800
-	Rochas félsicas Felsic rocks	2	4.97	3.07	0.39	59200
STOCK WORK	Xistos Schales	2.1	4.89	3.08	0.36	33900
Espilitos Spillites		2.63	2.84	2.75	0.04	38
Fm. Filito-qua Phillito-qua	uartzitica rtote Fm.	2.56	3.22	2.79	0.07	428

Densidades para a Região Mineira de Neves-Corvo

Densities of the Neves - Corvo Mining Region

Geophysics

Neves-Corvo mine region 1/50,000 - magnetometry

- Magnetic field reduced to pole
- Magnetic susceptibility database Marques et al., 2020

Fies, Coevec (7) Calmust Fully, (7)

41.1 200.04

Neves-Corvo mine region 1/50,000 - geophysics

Data processing/modelling

Gravimetric Residual Bouguer Anomaly

Geophysics

NC - Neves-Corvo deposit RO - Rosário antiform (VSC+PQ) SPC - São Pedro das Cabeças (VSC) ALV - Alvares region (VSC+PQ+Freixial)

Marques et al., 2019, 2020, Matos et al., 2020

Neves-Corvo mine region 1/50,000 - radiometry

- TEM Profiles (AGC/Lundin Mining)
- Modelling of the Mértola Fm. footwall surface
- São Pedro das Cabeças model

Batista et al., 2020, Carvalho et al., 2020, Dias et al., 2020, Matos et al., 2020

Data processing/modelling

PLMRA

SHALL ST

Figure 9. Correlation between 2D sciencic subse, TEM reprocessed data (see focation in Fig. 4c) and high-density anomalies of Lombador North obtained from the 3D committed involvien (man) 3) for d > 3.5 g/cm² (orange with manyammes) and d > 4.3 g/cm² (parple), TEM lines Lombador North 1700 and 1900 are shown. Arrows point to sciencic reduction (blue) and high-conductivity avoiralies (black) associated with Lombador North 1700 are shown.

Figure 5. Gravity inversion coulds for the third writes of runs compared with the extract of the step of lower VSC, built according to thill hole logs and the top of PO. It can be observed that high-density animalies produced by the inversion and latent depoint (pink bullet) are placed in the 2D model down to the TANWC and the Nevae-Correctment (NCM) throut, as expressed. Domation of $> 3.7 \text{ g/m}^2$ are shown. The problement construction of Figure 1 are version is some gravity anomalies have been labeled

Figure 10. Results for the third run of the gravimetric inversion (d > 3.5 g/cm³) overlaid by the analytical signal of the residual Bouguer anomaly map shown in Figure 2b. Geological contours of Figure 1b are also superimposed. Margues et al., 2022

Geochemistry - EXPLORA European Patent

- European Patent EP3809133 B1, 27.04.2022: "EXPLORA A method for characterizing underground metallic mineral deposits based on rock coatings and fracture fills"
 - New mineral exploration technique that can be applied in volcanogenic massive sulfide provinces
 - LNEG and Hercules Laboratory (Évora University) joint research
 - Test areas: Neves-Corvo, Rosário, Aljustrel and Alvares, Morais et al., 2023

P11 - pyrite

GSEU Project - São Domingos mine wastes

São Domingos mine, Mason & Barry (1857-1966), Rego 2004

LNEG

Mining wastes:

- Brittle pyrite ore
- Gossan
- Roasted ore
- Roman slag
- Modern slag
- Host volcanic rocks
- Host sediments
- Contaminated landfill
- Urban landfill
- Urban waste

Mining wastes:

- 1. Brittle pyrite ore
- 2. Gossan
- 3. Roasted ore
- 4. Roman slag
- 5. Modern slag
- 6. Host volcanic rocks
- 7. Host sediments
- 8. Contaminated landfill
- 9. Urban landfill
- 10. Urban waste

LNEG

Mining wastes:

- 1. Brittle pyrite ore
- 2. Gossan
- 3. Roasted ore
- 4. Roman slag
- 5. Modern slag
- 6. Host volcanic rocks
- 7. Host sediments
- 8. Contaminated landfill
- 9. Urban landfill
- 10. Urban waste

- Evaluation of the mine wastes located in the São Domingos mine northern sector (CONASA, 1990, 1991)
- 3D modelling and resource estimation (Vieira et al., 2016, 2020)
- Gossan, volcanic and sedimentary host rocks waste piles and landfill areas (Matos, 2004);
- 160 reverse circulation drill holes (sampled in 2 m intervals);
- 162 pits (1 to 3 samples per pit, up to 14 m depth);
- Irregular location (30 m)
- 1148 samples assayed for Au and Ag

* LNEG

São Domingos, mine Vieira, et al., 2016, 2020

Digital terrain model

Waste pile and landfill constrains boundaries for block modeling.

São Domingos, mine Vieira, et al., 2016, 2020

Conditioned areas:

- Village edified over part of the mine wastes
- Legally protected industrial and heritage sites, e.g., roman galleries and slags, mining infrastructure
- Restricted waste removal areas (conditioned
 10 m buffers
 Unconditioned landfill area

São Domingos village houses

Conditioned landfill area

São Domingos, mine Vieira, et al., 2016, 2020

Modelling:

- All modeled wastes: 2,615,850 m³ 3,979,800 t; •
- Unconditioned exploration wastes: 3,305,100 t (~17% reduction)
- Block sizes according the geochemical assay grids: 7 m - 12 m
- maximum waste thickness: 16 m

Wastepile and landfill block models for resource estimation

Scenario 1 - conditioned volumes - high grade wastes only (> 0.5 g/t Au) 2.38 Mt @ 0.77 g/t Au and 8.26 g/t Ag (59,489 ozt Au and 633,488 ozt Ag)

Scenario 2 - all volumes - both high and low grade wastes: 4.00 Mt @ 0.64 g/t Au and 7,30 g/t Ag (82,878 ozt Au and 955,753 ozt Ag)

LNEG

Case study: Ossa-Morena Zone Moura - Ficalho sector

3 - Predictive mineral exploration mapping

Gonçalves et al., 2019

LUEG

Preguiça old mine open pit (Zn, Pb)

ZWM-3D 2010 -----

Moura - Ficalho (Zn, Pb) Gonçalves et al., 2019

Moura - Ficalho (Zn, Pb) Gonçalves et al., 2019

Moura - Ficalho (Zn, Pb) Gonçalves et al., 2019

Final remarks

- New challenges the EU CRM Act
- Alentejo mineral cluster SRMs vs CRMs
- Raw data and online databases
- Near mining and green field exploration scenarios
- LNEG R&D smart specialization with universities and mining companies
- Human resources

Final remarks

- New challenges the EU CRM Act
- Alentejo mineral cluster SRMs vs CRMs
- Raw data and online databases
- Near mining and green field exploration scenarios
- LNEG R&D smart specialization with universities and mining companies
- Human resources

) |

Obrigado!