

http://doi.org/10.54499/ERA-MIN/0005/2019 http://doi.org/10.54499/ERA-MIN/0002/2019 https://mostmeg.rd.ciencias.ulisboa.pt/

ERA-MIN Joint Call 2019 (EU Horizon 2020 ERA-NET Cofund Project ERA-MIN2, Grant agreement Nº 730238)

Decoding Sn-W mineralisations and tourmalinization events through key alluvial heavy minerals, in Segura: a stage of target generation.

Rute Salgueiro; Nuno Grácio; L. Miguel Gaspar

Mineral Exploration

TARGET GENERATION

- Multi-stage mapping: @ regional/local-scale;
- Data collection, analysis and integration (e.g., geological, mineralogical, and geochemical anomalies);
- Prospective areas: anomalies intersection for further research

RESOURCE EVALUATION

• Grade and tonnage estimation

RESERVE DEFINITION

AREA

SELECTION

• Probable

existence of mineral

deposits

Mineral Exploration

• Segura (Castelo Branco) Góis_Segura Sn-W metallogenetic Belt

Peribatholitic Sn-W mineralisations exploited in the past

✓ Sn-W quartz veins

- ✓ Sn-bearing aplites/quartz lodes
- ✓ Li (-Sn) aplite-pegmatites

Hosted in metasediments

• Influence of the Estorninos granite; and its peri batholithic Sn quartz veins?

Mineral Exploration

TARGET GENERATION

 Mineralogical mapping:@ Regional/local-scale;

 Data collection, analysis and integration (i.e., mineralogical "anomalies")

Alluvial Heavy Minerals

Alluvial samples (sieved and panned)

Heavy liquids separation

Magnetic susceptibility separation

Mineral grains were identified, <u>(semi-)quantified</u> under binocular microscope Results controlled and refined by chemical analysis, DFX, UV, chemical tests, EMPA, LA-ICPMS, etc Mineral mapping

Tournaline (Na(Mg,Fe,Mn,Li,Al)₃ Al₆ [Si₆ O₁₈](BO₃)₃ (O,OH,F)₄)

REGIONAL & LOCAL SCALE ANOMALIES

 Composite Grains of Tourmaline needles and Phyllosilicates (± Quartz)

Tourmaline needles show different colours and pleochroism, some develop a preferential orientation; Probably represent different rocks affected by tourmalinization events with or without structural control;

• Additional information:

- Composite grains have relative low resistance to transport: very good proxies.

- Higher tourmaline concentration and grain size occurs in host rocks close to Sn-W mineralised veins in Segura (Silva, 2021) and, in general, close to pegmatites (London, 2016; Errandonea-Martin et al., 2022);

Local scale anomaly: Tourmalinization associated with mineralised quartz veins and aplite-pegmatites;

Regional scale anomaly: Tourmalinization associated with granitic intrusions; (hidden domes).

LOCAL SCALE ANOMALIES

• *Composite Grains of Cassiterite and Tourmaline* Different cassiterite grains with tourmaline needles: Proxies to mineralisation

• Additional information:

-Cassiterite was identified in the host metasedimentary rocks in the contact with the Sn-W mineralised quartz veins (Silva, 2021)

Local scale anomalies: Tourmalinization asociated with Sn-mineralisations (or very close host rocks)

REGIONAL & LOCAL SCALE ANOMALIES

Tourmaline	Colour / Diaphaneity		
Type 1	Dark Brown, almost opaque to translucent or hyaline, some with red tone		
Type 2	Dry green / Almost opaque to translucent or hyaline		
Type 3	Light bluish grey/colourless, hyaline; or, bluish green almost opaque		
Type 4	Orange to red, translucent		
Type 5	Milky light green		
Туре б	Light rose to brownish pink / Hyaline		
Туре 7	Turquoise or emerald green / translucent to opaque		

Tourmaline populations occurrence

Alluvial tourmaline from Segura (west side)

Tourmaline from granitic environments is typically enriched in iron (Henry and Guidotti, 1985)

Tourmaline populations: relative average abundance

Tourmaline populations: relative average abundance

Alluvial tourmaline from Segura (west area)

Alluvial tourmaline from Segura (west side)

Alluvial tourmaline Sn and Li contents from Segura (west side) samples

Tourmaline populations occurrence

Sn and Li in tourmaline as proxies for mineralizing fluids in ore deposits (For further research)

Wolframite Cassiterite

(Fe,Mn)WO₄

(SnO₂)

REGIONAL & LOCAL SCALE ANOMALIES

Maps of the abundance by the total number of grains of : scheelite, wolframite and cassiterite; 606 samples data from SFM old surveys. reassessed under the MOSTMEG project

Frame the anomalies halos of alluvial cassiterite and wolframite from Segura

Góis-Segura Tin-Tungsten Belt	Main Mineralisations	Main Ore Minerals	Heavy minerals concentrates (max. number of grains)	
Segura (~26km²)	Sn-W/W-Sn quartz veins	Cassiterite, Wolframite	Alluvial deposits : Cassiterite: 5000;	
	Sn bearing aplite-pegmatites	Cassiterite	Wolframite: 630; Scheelite: 505	
Góis (30 km²)	Sn -brecia and quartz veins	Cassiterite		
	W quartz veins W quartz veins W -Sn quartz veins Sn-W brecia, stockworks and aplite	Wolframite Wolframite Cassiterite, Wolframite Cassiterite, Wolframite (Schoolito)	Interfluvial soils: Wolframite: 2276; Cassiterite: 251; Scheelite: 70	
	Sn-W- quartz veins	Cassiterite, Wolframite		

Compiled from Viegas et al. (1988), Parra (1990), Inverno et al., (2007), Fernandes (2020), SIORMINP-LNEG data base and MOSTMEG].

Scheelite

(CaWO₄)

REGIONAL & LOCAL SCALE ANOMALIES

Map of the abundance by the total number of grains of : scheelite; 606 samples data from SFM old surveys. reassessed under the MOSTMEG project

✓ Alluvial tourmaline and Sn-W ore minerals in target generation stage

- Minerals physical/chemical properties and concentration (anomalies) maps:

Constitute a baseline to further research on the metallogenetic systems of Segura; and if complemented and integrated with other geological data can

Help to define prospective areas

Thank You